diff --git a/scripts/output/comparison/EDGEcomparison.R b/scripts/output/comparison/EDGEcomparison.R
index e653c0f78459b9cc6dee645be5aca1f97d42875c..8e1fe3c621dc2860a454090e98752699c9e18461 100644
--- a/scripts/output/comparison/EDGEcomparison.R
+++ b/scripts/output/comparison/EDGEcomparison.R
@@ -45,7 +45,7 @@ CO2km_int_newsales_all = NULL
 emidem_all = NULL
 EJfuelsPass_all = NULL
 EJfuelsFrgt_all = NULL
-emipFosEl_all = NULL
+emipSource_all = NULL
 
 scenNames <- getScenNames(outputdirs)
 EDGEdata_path  <- path(outputdirs, paste("EDGE-T/"))
@@ -331,88 +331,74 @@ emidemFun = function(emidem){
 }
 
 
-emipfosElFun = function(miffile, gdx){
+emipSourceFun = function(miffile){
+  
   minyr <- 2015
   maxyr <- 2100
   
-  TWa_2_EJ <- 31.536
-  GtC_2_MtCO2 <- 44 / 12 * 1000
-  
-  prodSe <- readgdx(gdx, "vm_prodSe")[
-    tall >= minyr & tall <= maxyr][, value := value*TWa_2_EJ]
-  setnames(prodSe, c("year", "region", "pe", "se", "te", "value"))
-  
-  
-  prodSyn <- prodSe[te == "MeOH"]
-  
-  prodSyn[, se := "synliq"]
-  prodSyn[, c("pe", "te") := NULL]
-  setnames(prodSyn, "value", "syn_val")
-  prodSyn <- rbind(prodSyn, CJ(year=c(2015, 2020),
-                               region=prodSyn$region,
-                               se="synliq", syn_val=0,
-                               unique=T))
-  
-  
-  ## Electricity consumption for H2 production
-  prodEl <- prodSe[se == "seel"]
-  prodEl[, allEl := sum(value), by=.(year, region)][
-    , c("pe", "se", "te", "value", "tenames") := NULL
-    ]
-  prodEl <- unique(prodEl)
-  
-  prodElH2 <- prodSe[pe == "seel" & se == "seh2"]
-  prodElH2[, elh2 := sum(value), by=.(year, region)]
-  prodElH2[, c("pe", "se", "te", "value") := NULL]
-  prodElH2 <- unique(prodElH2)
-  
-  prodShare <- merge(prodEl, prodElH2, all=T)
-  prodShare[, netProd := allEl - elh2]
-  ## CO2 emission for electricity
-  vemi <- readgdx(gdx, "vm_emiTeDetail")[ttot >= minyr & ttot <= maxyr]
-  setnames(vemi, c("year", "region", "pe", "se", "te", "emi", "val"))
-  emico2 <- vemi[se == "seel" & emi == "co2"][
-    , co2val := sum(val) * GtC_2_MtCO2, by=.(year, region)][
-      , c("pe", "se", "te", "emi", "val") := NULL
-      ]
-  emico2 <- unique(emico2)
-  
-  emico2 <- merge(emico2, prodShare, by=c("year", "region"))
-  emico2[, int := co2val/allEl] # MtCO2/EJ -> tCO2/MJ
-  
-  ## emissions from electricity for hydrogen production
-  emisyn <- emico2[, .(se="seh2", co2 = int * elh2), by=.(year, region)] # MtCO2
-  
-  ## add electric cars upstream emissions
-  bevemi = miffile[
-    variable == "Emi|CO2|Transport|Pass|Short-Medium Distance|Electricity" &
+  ## fe hydrogen used for liquids consumption in passenger transport
+  h2liqp = miffile[
+    variable == "FE|Transport|Pass|Liquids|Hydrogen" &
       year >= minyr & year <= maxyr][
-        , .(year, region, se="bevs", co2=value)]
-  
+        , .(year, region, fes="feh2l", fe=value)]
   
-  ## fossil emissions
-  fosemi = miffile[
-    variable == "Emi|CO2|Transport|Pass|Short-Medium Distance|Liquids" &
+  ## fe hydrogen used in passenger transport 
+  h2p = miffile[
+    variable == "FE|Transport|Pass|Hydrogen" &
       year >= minyr & year <= maxyr][
-        , .(year, region, se="fos", co2=value)]
-  
-  
-  ## combine all
-  emi_all <- rbindlist(list(
-    emisyn,
-    bevemi,
-    fosemi))
+        , .(year, region, fes="feh2", fe=value)]
   
-  ## sum bev and hydrogen upstream emissions
-  emi_wide <- dcast(emi_all, year+region ~ se)[, all_el := bevs + seh2]
+  ## elec used in passenger transport
+  elp = miffile[
+    variable == "FE|Transport|Pass|Electricity" &
+      year >= minyr & year <= maxyr][
+        , .(year, region, fes="el", fe=value)]
   
-  emi_result <- melt(emi_wide,
-                     value.name="co2",
-                     id.vars = c("year", "region"),
-                     variable.name = "tech")[tech %in% c("all_el", "fos")]
+  ## final energy electricity 
+  el = miffile[
+    variable == "FE|+|Electricity" &
+      year >= minyr & year <= maxyr][
+        , .(year, region, fes="el", fe=value)]
   
+  ## emission supply side from electricity
+  emiel = miffile[
+    variable == "Emi|CO2|Energy|Supply|Electricity|Gross" &
+      year >= minyr & year <= maxyr][
+        , .(year, region, emis="el", emi=value)]
   
-  return(emi_result)
+  ## emissions from transport passenger
+  emip = miffile[
+    variable == "Emi|CO2|Transport|Pass|Short-Medium Distance|Liquids" &
+      year >= minyr & year <= maxyr][
+        , .(year, region, source="liq", emi=value)]
+  
+  ## calculate fossil electricity carbon intensity
+  elint = merge(el, emiel, by = c("year", "region"))
+  elint[, int := emi/fe]
+  elint = elint[,.(year, region, int)]
+  
+  ## calculate emissions from electricity of electrified transport
+  emielp = merge(elint, elp, by = c("year", "region"))
+  emielp[, emi := int*fe]
+  emielp = emielp[,.(year, region, emi, source = "elp")]
+  ## estimate the secondary energy from electricity based synfuels in passenger transport 
+  sesynp = h2liqp[][, se := fe/0.55][, fe := NULL]
+  
+  ## estimate the secondary energy from hydrogen in passenger transport
+  seh2np = h2p[][, se := fe/0.7][, fe := NULL]
+  
+  ## emissions CO2 derived from synfuels in passenger transport
+  emisynp = merge(sesynp, elint, by = c("year", "region"))
+  emisynp[, emi := se*int]
+  emisynp = emisynp[,.(year, region, emi, source = "synf")]
+  ## emissions CO2 derived from hydrogen
+  emih2p = merge(seh2np, elint, by = c("year", "region"))
+  emih2p[, emi := se*int]
+  emih2p = emih2p[,.(year, region, emi, source = "h2")] 
+  ## summarize emissions
+  emi_all = rbindlist(list(emih2p, emisynp, emielp, emip), use.names=TRUE)
+
+  return(emi_all)
 }
 
 for (outputdir in outputdirs) {
@@ -471,7 +457,7 @@ for (outputdir in outputdirs) {
   ## calculate demand emissions
   emidem = emidemFun(emidem)
   ## calculate emissions from passenger SM fossil fuels (liquids)
-  emipFosEl =  emipfosElFun(miffile, gdx)
+  emipSource =  emipSourceFun(miffile)
   ## add scenario dimension to the results
   fleet[, scenario := as.character(unique(miffile$scenario))]
   salescomp[, scenario := unique(miffile$scenario)]
@@ -483,7 +469,7 @@ for (outputdir in outputdirs) {
   emidem[, scenario := as.character(unique(miffile$scenario))]
   EJfuelsPass[, scenario := as.character(unique(miffile$scenario))]
   EJfuelsFrgt[, scenario := as.character(unique(miffile$scenario))]
-  emipFosEl[, scenario := as.character(unique(miffile$scenario))]
+  emipSource[, scenario := as.character(unique(miffile$scenario))]
   ## rbind scenarios
   salescomp_all = rbind(salescomp_all, salescomp)
   fleet_all = rbind(fleet_all, fleet)
@@ -495,7 +481,7 @@ for (outputdir in outputdirs) {
   emidem_all = rbind(emidem_all, emidem)
   EJfuelsPass_all = rbind(EJfuelsPass_all, EJfuelsPass)
   EJfuelsFrgt_all = rbind(EJfuelsFrgt_all, EJfuelsFrgt)
-  emipFosEl_all = rbind(emipFosEl_all, emipFosEl)
+  emipSource_all = rbind(emipSource_all, emipSource)
 }
 
 outdir = paste0("output/comparerunEDGE", gsub(" | ^([[:alpha:]]*).*","", Sys.time()))
@@ -513,7 +499,7 @@ saveRDS(CO2km_int_newsales_all, paste0(outdir, "/CO2km_int_newsales_all.RDS"))
 saveRDS(emidem_all, paste0(outdir, "/emidem_all.RDS"))
 saveRDS(EJfuelsPass_all, paste0(outdir, "/EJfuelsPass_all.RDS"))
 saveRDS(EJfuelsFrgt_all, paste0(outdir, "/EJfuelsFrgt_all.RDS"))
-saveRDS(emipFosEl_all, paste0(outdir, "/emipFosEl_all.RDS"))
+saveRDS(emipSource_all, paste0(outdir, "/emipSource_all.RDS"))
 file.copy(file.path("./scripts/output/comparison/notebook_templates", md_template), outdir)
 rmarkdown::render(path(outdir, md_template), output_format="pdf_document")
 
diff --git a/scripts/output/comparison/notebook_templates/EDGEdashboard.Rmd b/scripts/output/comparison/notebook_templates/EDGEdashboard.Rmd
index 90d8e2b5be402f270a7ad10cad0a74948e0f4e05..dff83d1a07cd5b0495eb0bd575c972137a95d6dc 100644
--- a/scripts/output/comparison/notebook_templates/EDGEdashboard.Rmd
+++ b/scripts/output/comparison/notebook_templates/EDGEdashboard.Rmd
@@ -38,8 +38,34 @@ legend=plotlist$legend
   #data frame with help tooltips
 
   helpTooltip_df <- data.frame(
-    title=c("Distance traveled per capita", "Total Passenger Transport Energy Services Demand", "Sales composition", "Final energy LDVs by fuel","Transport Passenger Final Energy Demand", "Fleet composition", "Fleet composition comparison", "Emission intensity, new sales comparison", "Comparison of passenger final energy demand", "Emissions passenger transport", "Emission intensity of new sales", "Comparison of sales composition", "Comparison of passenger transport fossil fuels emissions", "Comparison of passenger electricity production emissions"),
-    placement=c("right", "left", "right", "left", "right", "right", "right", "right", "right", "left", "left", "right", "left", "left"))
+    title=c("Distance traveled per capita", 
+            "Total Passenger Transport Energy Services Demand", 
+            "Sales composition", 
+            "Final energy LDVs by fuel",
+            "Transport Passenger Final Energy Demand", 
+            "Fleet composition", 
+            "Fleet composition comparison", 
+            "Emission intensity, new sales comparison", 
+            "Comparison of passenger final energy demand", 
+            "Passenger transport emissions supply and demand", 
+            "Emission intensity of new sales", 
+            "Comparison of sales composition", 
+            "Comparison of passenger transport emissions supply and demand", 
+            "Comparison of passenger tailpipe emissions from fossil fuels"),
+    placement=c("right", 
+                "left",
+                "right", 
+                "left",
+                "right", 
+                "right",
+                "right",
+                "left",
+                "right",
+                "left",
+                "left",
+                "right", 
+                "right",
+                "left"))
 
 
 helpTooltip = function(tooltipdf){
@@ -112,7 +138,7 @@ Row {data-height=300}
 
 ### Transport scenario {data-width=100}
 ```{r}
-valueBox("Conventional Case NoTax")
+valueBox("Baseline")
 ```
 
 
@@ -439,33 +465,37 @@ Row {data-height = 450}
 plotlist$comparison$plot$vintscen
 ```
 
-### Comparison of passenger final energy demand
+### Comparison of sales composition
 ```{r}
-plotlist$comparison$plot$EJpassfuels_scen
+plotlist$comparison$plot$salescom_scen
 ```
 
-### Comparison of passenger transport fossil fuels emissions
-
+### Emission intensity, new sales comparison
 ```{r}
-plotlist$comparison$plot$emipfos_scen
+plotlist$comparison$plot$CO2km_intensity_newsales_scen
 ```
 
 Row {data-height = 450}
 -----------------------------------------------------------------------
 
-### Comparison of sales composition
+### Comparison of passenger final energy demand
+
 ```{r}
-plotlist$comparison$plot$salescom_scen
+plotlist$comparison$plot$EJpassfuels_scen
 ```
 
-### Emission intensity, new sales comparison
+
+### Comparison of passenger transport emissions supply and demand
+
 ```{r}
-plotlist$comparison$plot$CO2km_intensity_newsales_scen
+plotlist$comparison$plot$emiptot_scen
 ```
 
-### Comparison of passenger electricity production emissions
+
+### Comparison of passenger tailpipe emissions from fossil fuels
+
 ```{r}
-plotlist$comparison$plot$emipel_scen
+plotlist$comparison$plot$emipfos_scen
 ```
 
 Passenger transport overview {data-icon="glyphicon glyphicon-scale"}
@@ -484,7 +514,7 @@ Row {data-height=300}
 
 ### Transport scenario {data-width=100}
 ```{r}
-valueBox("Conventional Case NoTax")
+valueBox("Baseline")
 ```
 
 
@@ -523,7 +553,7 @@ Row {data-heigth=500}
 plotlist$`ConvCase NoTax`$plot$EJpassfuels
 ```
 
-### Emissions passenger transport
+### Passenger transport emissions supply and demand
 
 ```{r}
 plotlist$`ConvCase NoTax`$plot$emip
@@ -586,7 +616,7 @@ Row {data-heigth=500}
 plotlist$ConvCase$plot$EJpassfuels
 ```
 
-### Emissions passenger transport
+### Passenger transport emissions supply and demand
 
 ```{r}
 plotlist$ConvCase$plot$emip
@@ -651,7 +681,7 @@ Row {data-heigth=500}
 plotlist$HydrHype$plot$EJpassfuels
 ```
 
-### Emissions passenger transport
+### Passenger transport emissions supply and demand
 
 ```{r}
 plotlist$HydrHype$plot$emip
@@ -714,7 +744,7 @@ Row {data-heigth=500}
 plotlist$ElecEra$plot$EJpassfuels
 ```
 
-### Emissions passenger transport
+### Passenger transport emissions supply and demand
 
 ```{r}
 plotlist$ElecEra$plot$emip
@@ -776,7 +806,7 @@ Row {data-heigth=500}
 plotlist$SynSurge$plot$EJpassfuels
 ```
 
-### Emissions passenger transport
+### Passenger transport emissions supply and demand
 
 ```{r}
 plotlist$SynSurge$plot$emip
@@ -790,49 +820,53 @@ Column {data-width= 450}
 -----------------------------------------------------------------------
 
 ### Baseline (No Carbon Pricing) {data-height=200}
-</ul> 
-  <li> Structurally conservative: continuation of historic consumer preferences for conventional combustion engine cars. </li>
-  <li> No policies to promote alternative vehicles </li>
-  <li> Slow build-up of electric recharging stations </li>
+</ul style="padding-left:20px"> 
+  <li class="shift"> Structurally conservative: continuation of historic consumer preferences for conventional combustion engine cars. </li>
+  <li class="shift"> No policies to promote alternative vehicles </li>
+  <li class="shift"> Slow build-up of electric recharging stations </li>
 </ul>
 
 
 ### Conventional Case {data-height=200}
 
-</ul>
-  <li> Structurally conservative: continuation of historic consumer preferences for conventional combustion engine cars </li>
-  <li> No policies to promote alternative vehicles </li>
-  <li> Slow build-up of electric recharging stations </li>
+</ul style="padding-left:20px">
+  <li class="shift"> Carbon pricing </li>
+  <li class="shift"> Structurally conservative: continuation of historic consumer preferences for conventional combustion engine cars </li>
+  <li class="shift"> No policies to promote alternative vehicles </li>
+  <li class="shift"> Slow build-up of electric recharging stations </li>
 </ul>
 
 
 ### Hydrogen Hype {data-height=200}
 
-</ul>
-  <li> Fast build-up of hydrogen refuelling stations </li>
-  <li> Rebates-feebates scheme: FCEVs receive 5000&euro; subsidies for purchases in 2020, around 3300&euro; in 2025 and 1700&euro; in 2030. 1000&euro; mark-up cost on internal combustion engines are applied in 2020, 700&euro; in 2025 and 300&euro; in 2030 </li>
-  <li> Increasing dis-preference for internal combustion engines due to tightening regulation </li>
-  <li> Policy push for FCEVs: Support policies induce a shift from dis-preference to preference of hydrogen vehicles, e.g. incentives to carmakers and car retailers to provide hidrogen vehicles </li>
-  <li> Hydrogen from renewable resources (green hydrogen) is at least 95&#37; of the total hydrogen </li>
-  <li> Slow build-up of electric recharging stations </li>
+</ul style="padding-left:20px">
+  <li class="shift"> Carbon pricing </li>
+  <li class="shift"> Fast build-up of hydrogen refuelling stations </li>
+  <li class="shift"> Rebates-feebates scheme: FCEVs receive 5000&euro; subsidies for purchases in 2020, around 3300&euro; in 2025 and 1700&euro; in 2030. 1000&euro; mark-up cost on internal combustion engines are applied in 2020, 700&euro; in 2025 and 300&euro; in 2030 </li>
+  <li class="shift"> Increasing dis-preference for internal combustion engines due to tightening regulation </li>
+  <li class="shift"> Policy push for FCEVs: Support policies induce a shift from dis-preference to preference of hydrogen vehicles, e.g. incentives to carmakers and car retailers to provide hidrogen vehicles </li>
+  <li class="shift"> Hydrogen from electricity is at least 95&#37; of the total hydrogen, with electricity from renewable resources reaching around 90&#37; of the electricity production in 2050 </li>
+  <li class="shift"> Slow build-up of electric recharging stations </li>
 </ul>
 
 
 ### Electric Era {data-height=200}
 
-</ul>
-  <li> Rebates-feebates scheme: BEVs receive 5000&euro; subsidies for purchases in 2020, around 3300&euro; in 2025 and 1700&euro; in 2030. 1000&euro; mark-up cost on internal combustion engines are applied in 2020, 700&euro; in 2025 and 300&euro; in 2030 </li>
-  <li> Increasing dis-preference for internal combustion engines due to tightening regulation </li>
+</ul style="padding-left:20px">
+  <li class="shift"> Carbon pricing </li>
+  <li class="shift"> Rebates-feebates scheme: BEVs receive 5000&euro; subsidies for purchases in 2020, around 3300&euro; in 2025 and 1700&euro; in 2030. 1000&euro; mark-up cost on internal combustion engines are applied in 2020, 700&euro; in 2025 and 300&euro; in 2030 </li>
+  <li class="shift"> Increasing dis-preference for internal combustion engines due to tightening regulation </li>
 </ul>
 
 
 ### Synfuel Surge {data-height=200}
 
-</ul>
-  <li> Structurally conservative: continuation of historic consumer preferences for conventional combustion engine cars </li>
-  <li> Synfuels are forced in the liquids mix  blending mandates reaching 10&#37; of liquids fuels in transportation by 2035 </li>
-  <li> Hydrogen from renewable resources (green hydrogen) is at least 95&#37; of the total hydrogen </li>
-  <li> CO<sub>2</sub> emissions from other sources (e.g., industrial installations) are captured and reused to produce syntethic fuels (Carbon Capture and Utilization) </li>
+</ul style="padding-left:20px">
+  <li class="shift"> Carbon pricing </li>
+  <li class="shift"> Structurally conservative: continuation of historic consumer preferences for conventional combustion engine cars </li>
+  <li class="shift"> Synfuels are forced in the liquids mix  blending mandates reaching 20&#37; of liquids fuels in transportation by 2035 </li>
+  <li class="shift"> Hydrogen from electricity is at least 95&#37; of the total hydrogen, with electricity from renewable resources reaching around 90&#37; of the electricity production in 2050</li>
+  <li class="shift"> CO<sub>2</sub> emissions from other sources (e.g., industrial installations) are captured and reused to produce syntethic fuels (Carbon Capture and Utilization) </li>
 </ul>
 
 
@@ -1001,7 +1035,7 @@ navBarMemory = function(topMenuLabel, sideBarClass){
     user-select: none;
   }
 
-<!-- element "legend" of panels -->
+/*legend element with tooltip*/
   .rightal {
   float: right;
   font-weight: bold;
@@ -1009,11 +1043,13 @@ navBarMemory = function(topMenuLabel, sideBarClass){
   color: #7c7c7c;
   padding: 5px 10px;
   }
+  
+ul{
+     list-tyle:none;
+}
 
-<!-- indentation for bullet points list -->  
-  li{
+.shift{
     margin-left:20px;
-  }
-  
-  
+}
+
 </style>
diff --git a/scripts/output/comparison/notebook_templates/helper_dashboard.R b/scripts/output/comparison/notebook_templates/helper_dashboard.R
index fb48dd8dcc4fb5169c1fa8342ce469f9d35302ec..d789ba9ae29f2622711d239ae352f397673685ae 100644
--- a/scripts/output/comparison/notebook_templates/helper_dashboard.R
+++ b/scripts/output/comparison/notebook_templates/helper_dashboard.R
@@ -67,12 +67,10 @@ cols <- c("NG" = "#d11141",
           "Hydrogen_push" = "#00aedb",
           "Conservative_liquids" = "#113245",
           "ConvCase" = "#113245",
-          "ConvCaseNoTax" = "#d11141",
+          "Baseline" = "#d11141",
           "ConvCaseWise" = "#d11141",
           "SynSurge" = "orchid",
-          "Fossil fuels" = "#113245",
-          "Fossil fuels + Electricity production" = "#f37735",
-          "Electricity production" = "#6495ed")
+          "Fossil fuels" = "#113245")
 
 legend_ord_modes <- c("Freight Rail", "Truck", "Shipping", "International Shipping", "Domestic Shipping",  "Trucks",
                       "Motorbikes", "Small Cars", "Large Cars", "Van",
@@ -96,7 +94,7 @@ ESmodecap_all = readRDS("ESmodecap_all.RDS")
 ESmodeabs_all = readRDS("ESmodeabs_all.RDS")
 CO2km_int_newsales_all = readRDS("CO2km_int_newsales_all.RDS")
 EJpass_all = readRDS("EJfuelsPass_all.RDS")
-emipFosEl_all = readRDS("emipFosEl_all.RDS")
+emipSource_all = readRDS("emipSource_all.RDS")
 
 ## scenarios
 scens = unique(EJmode_all$scenario)
@@ -142,13 +140,13 @@ vintcomparisondash = function(dt, scen){
 
 
 vintscen_dash = function(dt){
-  dt[, scenario := ifelse(scenario == "Base_ConvCase", "ConvCaseNoTax", scenario)]
+  dt[, scenario := ifelse(scenario == "Base_ConvCase", "Baseline", scenario)]
   dt = dt[year %in% c(2020, 2030, 2050)]
   dt[, year := as.character(year)]
   dt = dt[region == region_plot]
   dt = dt[,.(value = sum(value)), by = c("region", "technology", "year", "scenario")]
   dt[, scenario := gsub(".*_", "", scenario)]
-  dt[, scenario := factor(scenario, levels = c("ConvCaseNoTax", "ConvCase", "HydrHype", "ElecEra", "SynSurge"))]
+  dt[, scenario := factor(scenario, levels = c("Baseline", "ConvCase", "HydrHype", "ElecEra", "SynSurge"))]
   dt[, details := paste0("Vehicles: ", round(value, 0), " [million]", "<br>", "Technology: ", technology, "<br>", "Region: ", region," <br>", "Year: ", year) ]
   g1 = ggplot()+
     geom_bar(data = dt[year %in% c(2030, 2050)],
@@ -247,7 +245,7 @@ salescomdash = function(dt, scen){
 
 ESmodecapdash = function(dt, scen){
   dt = dt[region == region_plot & scenario == scen & year <= 2050]
-  dt[, details := paste0("Demand: ", round(cap_dem, digits = 0), ifelse(mode == "pass", " [pkm/cap]",  " [tkm/cap]"), "<br>", "Vehicle: ", vehicle_type_plot, "<br>", "Region: ", region," <br>", "Year: ", year) ] 
+  dt[, details := paste0("Demand: ", round(cap_dem, digits = 0), ifelse(mode == "pass", " [km]",  " [tkm/cap]"), "<br>", "Vehicle: ", vehicle_type_plot, "<br>", "Region: ", region," <br>", "Year: ", year) ] 
   
   plot_pass = ggplot()+
     geom_area(data = dt[mode == "pass"], aes(x = year, y = cap_dem, group = vehicle_type_plot, fill = vehicle_type_plot, text = details), position= position_stack())+
@@ -371,12 +369,12 @@ EJpass_dash = function(dt, scen){
 }
 
 EJpass_scen_dash = function(dt){
-  dt[, scenario := ifelse(scenario == "Base_ConvCase", "ConvCaseNoTax", scenario)]
+  dt[, scenario := ifelse(scenario == "Base_ConvCase", "Baseline", scenario)]
   dt[, subtech := factor(subtech, levels = legend_ord)]
   dt = dt[region == region_plot & year %in% c(2020, 2030, 2050) & sector == "trn_pass"]
   dt[, details := paste0("Demand: ", round(demand_EJ, digits = 0), " [EJ]","<br>", "Technology: ", subtech, "<br>", "Region: ", region," <br>", "Year: ", year) ]
   dt[, scenario := gsub(".*_", "", scenario)]
-  dt[, scenario := factor(scenario, levels = c("ConvCaseNoTax", "ConvCase", "HydrHype", "ElecEra", "SynSurge"))]
+  dt[, scenario := factor(scenario, levels = c("Baseline", "ConvCase", "HydrHype", "ElecEra", "SynSurge"))]
   
   g1 = ggplot()+
     geom_bar(data = dt[year %in% c(2030, 2050)], aes(x = scenario, y = demand_EJ, group = subtech,
@@ -470,7 +468,7 @@ CO2km_intensity_newsalesdash = function(dt, scen){
 
 
 CO2km_intensity_newsales_scen_dash = function(dt){
-  dt[, scenario := ifelse(scenario == "Base_ConvCase", "ConvCaseNoTax", scenario)]
+  dt[, scenario := ifelse(scenario == "Base_ConvCase", "Baseline", scenario)]
   historical_values = data.table(year = c(2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018), emi = c(159, 157, 145, 140, 137, 132, 128, 124, 120, 119, 119, 120))
   historical_values[, details := "Historical values"]
   targets = data.table(name = c("2021 target", "2025 target", "2030 target"), value = c(95, 95*(1-0.15), 95*(1-0.37)))
@@ -553,20 +551,20 @@ EJLDVdash <- function(dt, scen){
 emip_dash = function(dt, scen){
   dt[, year:= as.numeric(year)]
   dt = dt[region == region_plot & scenario == scen & year <= 2050 & year >= 2020]
-  dt = dcast(dt, region + year + scenario  ~ tech, value.var = "co2")
+  dt = dcast(dt, region + year + scenario  ~ source, value.var = "emi")
   
-  dt[, tot := fos + all_el]
   dt = melt(dt, id.vars = c("region", "year", "scenario"))
-  dt[variable == "tot", type := "Fossil fuels + Electricity production"]
-  dt[variable == "all_el", type := "Electricity production"]
-  dt[variable == "fos", type := "Fossil fuels"]
+  dt[variable == "synf", type := "Synfuel"]
+  dt[variable == "h2", type := "Hydrogen"]
+  dt[variable == "elp", type := "Electricity"]
+  dt[variable == "liq", type := "Fossil fuels"]
+  dt[variable == "synf" & value <0, value := 0]
   
   dt[, details := paste0("Emissions: ", round(value, digits = 0), " [MtCO<sub>2</sub>]", "<br>", "Type: ", type, "<br>", "Region: ", region," <br>", "Year: ", year) ] 
   
   
   plot = ggplot()+
-    geom_area(data = dt[year >= 2020 & type == "Fossil fuels + Electricity production"], aes(x = year, y = value, text = details, fill =type, group = type), alpha = 0.4, position = position_stack())+
-    geom_line(data = dt[year >= 2020 & type != "Fossil fuels + Electricity production"], aes(x = year, y = value, text = details, group = type, color = type))+
+    geom_bar(data = dt[year >= 2020], aes(x = year, y = value, text = details, fill = type, group = type), position = position_stack(), stat = "identity")+
     labs(x = "", y = "")+
     theme_minimal()+
     expand_limits(y = c(0,1))+
@@ -597,24 +595,26 @@ emip_dash = function(dt, scen){
 }
 
 emipscen_dash = function(dt){
-  dt = dt[region == region_plot & year <= 2050 & year >= 2020]
+  dt = dt[region == region_plot & year <= 2050 & year >= 2015]
   dt[, year := as.numeric(year)]
   
-  dt[, scenario := ifelse(scenario == "Base_ConvCase", "ConvCaseNoTax", scenario)]
+  dt[, scenario := ifelse(scenario == "Base_ConvCase", "Baseline", scenario)]
   dt[, scenario := gsub(".*_", "", scenario)]
+  dt = dt[scenario != "Baseline"]
+  dt = dcast(dt, region + year + scenario  ~ source, value.var = "emi")
   
-  dt = dcast(dt, region + year + scenario  ~ tech, value.var = "co2")
-  
-  dt[, tot := fos + all_el]
+  dt[, tot := h2 + synf + elp + liq]
   dt = melt(dt, id.vars = c("region", "year", "scenario"))
-  dt[variable == "tot", type := "Fossil fuels + Electricity production"]
-  dt[variable == "all_el", type := "Electricity production"]
-  dt[variable == "fos", type := "Fossil fuels"]
-  
+  dt[variable == "tot", type := "Passenger transport emissions, supply and demand"]
+  dt[variable == "synf", type := "Synfuels"]
+  dt[variable == "h2", type := "Hydrogen"]
+  dt[variable == "elp", type := "Electricity"]
+  dt[variable == "liq", type := "Fossil fuels"]
+
   dt[, details := scenario ] 
   
-  pfos = ggplot()+
-    geom_line(data = dt[type == "Fossil fuels"], aes(x = year, y = value, text = details, group = scenario, color = scenario))+
+  ptot = ggplot()+
+    geom_line(data = dt[variable == "tot"], aes(x = year, y = value, text = details, group = scenario, color = scenario))+
     labs(x = "", y = "")+
     theme_minimal()+
     expand_limits(y = c(0,1))+
@@ -630,19 +630,19 @@ emipscen_dash = function(dt){
           strip.background = element_rect(color = "grey"))+
     scale_color_manual(values = cols)
   
-  pfos = ggplotly(pfos, tooltip = c("text")) %>%
+  ptot = ggplotly(ptot, tooltip = c("text")) %>%
     config(modeBarButtonsToRemove=plotlyButtonsToHide, displaylogo=FALSE) %>%
     layout(yaxis=list(title='[MtCO<sub>2</sub>]', titlefont = list(size = 10)))
   
   vars = as.character(unique(dt$scenario))
   
   
-  pel = ggplot()+
-    geom_line(data = dt[type == "Electricity production"], aes(x = year, y = value, text = scenario, group = scenario, color = scenario))+
+  pfos = ggplot()+
+    geom_line(data = dt[variable == "liq"], aes(x = year, y = value, text = scenario, group = scenario, color = scenario))+
     labs(x = "", y = "")+
     theme_minimal()+
     expand_limits(y = c(0,1))+
-    ylim(-80, 140)+
+    ylim(0, 1800)+
     scale_x_continuous(breaks = c(2020, 2030, 2050))+
     theme(axis.text.x = element_text(angle = 90, size = 8, vjust=0.5, hjust=1),
           axis.text.y = element_text(size = 8),
@@ -654,11 +654,11 @@ emipscen_dash = function(dt){
           strip.background = element_rect(color = "grey"))+
     scale_color_manual(values = cols)
   
-  pel = ggplotly(pel, tooltip = c("text")) %>%
+  pfos = ggplotly(pfos, tooltip = c("text")) %>%
     config(modeBarButtonsToRemove=plotlyButtonsToHide, displaylogo=FALSE) %>%
     layout(yaxis=list(title='[MtCO<sub>2</sub>]', titlefont = list(size = 10)))
   
-  plot = list(pfos = pfos, pel = pel, vars = vars)
+  plot = list(pfos = pfos, ptot = ptot, vars = vars)
   
   return(plot)
   
@@ -667,11 +667,11 @@ emipscen_dash = function(dt){
 
 salescom_scen_dash = function(dt){
   dt[, scenario := as.character(scenario)]
-  dt[, scenario := ifelse(scenario == "Base_ConvCase", "ConvCaseNoTax", scenario)]
+  dt[, scenario := ifelse(scenario == "Base_ConvCase", "Baseline", scenario)]
   dt = dt[region == region_plot & year %in% c(2020, 2030, 2050)]
   dt[, year := as.numeric(as.character(year))]
   dt[, scenario := gsub(".*_", "", scenario)]
-  dt[, scenario := factor(scenario, levels = c("ConvCaseNoTax", "ConvCase", "HydrHype", "ElecEra", "SynSurge"))]
+  dt[, scenario := factor(scenario, levels = c("Baseline", "ConvCase", "HydrHype", "ElecEra", "SynSurge"))]
   ## normalize shares so to have sum to 1
   dt[, shareFS1 := round(shareFS1*100, digits = 0)]
   dt[, shareFS1 := shareFS1/sum(shareFS1), by = c("region", "year", "scenario")]
@@ -767,7 +767,7 @@ create_plotlist = function(scens, salescomp_all, fleet_all, ESmodecap_all, EJfue
     ## final energy LDVs by fuel
     EJLDV = EJLDVdash(EJroad_all, scen)
     ## emissions passenger transport demand and upstream emissions
-    emip = emip_dash(emipFosEl_all, scen)
+    emip = emip_dash(emipSource_all, scen)
     
     ## collect plots
     output[[scenname]]$plot$vintcomp = vintcomp$plot
@@ -792,7 +792,7 @@ create_plotlist = function(scens, salescomp_all, fleet_all, ESmodecap_all, EJfue
   ## sales
   salescom_scen = salescom_scen_dash(salescomp_all)
   ## emissions
-  emip_scen = emipscen_dash(emipFosEl_all)
+  emip_scen = emipscen_dash(emipSource_all)
   
   
   output[["comparison"]]$plot$vintscen = vintscen$plot
@@ -800,7 +800,7 @@ create_plotlist = function(scens, salescomp_all, fleet_all, ESmodecap_all, EJfue
   output[["comparison"]]$plot$EJpassfuels_scen = EJpassfuels_scen$plot
   output[["comparison"]]$plot$salescom_scen = salescom_scen$plot
   output[["comparison"]]$plot$emipfos_scen = emip_scen$pfos
-  output[["comparison"]]$plot$emipel_scen = emip_scen$pel
+  output[["comparison"]]$plot$emiptot_scen = emip_scen$ptot
   
   
   
@@ -816,9 +816,9 @@ create_plotlist = function(scens, salescomp_all, fleet_all, ESmodecap_all, EJfue
   names(legend$'Total Passenger Transport Energy Services Demand'$contents) <- ESmodeabs$vars
   legend$'Total Passenger Transport Energy Services Demand'$description <- "<p>Energy services demand, passenger transport</p>"
   
-  legend$'Emissions passenger transport'$contents <- lapply(emip$vars, function(var) { return(list("fill"=toString(cols[var]),"linetype"=NULL)) })
-  names(legend$'Emissions passenger transport'$contents) <- emip$vars
-  legend$'Emissions passenger transport'$description <- "<p>Emissions from fossil fuels and electricity production and use, passenger transport (international aviation excluded)<p>"
+  legend$'Passenger transport emissions supply and demand'$contents <- lapply(emip$vars, function(var) { return(list("fill"=toString(cols[var]),"linetype"=NULL)) })
+  names(legend$'Passenger transport emissions supply and demand'$contents) <- emip$vars
+  legend$'Passenger transport emissions supply and demand'$description <- "<p>Passenger transport emissions supply and demand<p>"
   
   
   legend$'Emission intensity of new sales'$description <- "CO<sub>2</sub> intensity of light duty vehicles sales, historical and projected values"
@@ -857,13 +857,13 @@ create_plotlist = function(scens, salescomp_all, fleet_all, ESmodecap_all, EJfue
   names(legend$'Comparison of sales composition'$contents) <- salescom_scen$vars
   legend$'Comparison of sales composition'$description <- "<p>Composition of sales of light duty vehicles in selected years</p>"
   
-  legend$'Comparison of passenger transport fossil fuels emissions'$contents <- lapply(emip_scen$vars, function(var) { return(list("fill"=toString(cols[var]),"linetype"=NULL)) })
-  names(legend$'Comparison of passenger transport fossil fuels emissions'$contents) <- emip_scen$vars
-  legend$'Comparison of passenger transport fossil fuels emissions'$description <- "<p>Emissions from fossil fuels production and use in passenger transport</p>"
+  legend$'Comparison of passenger transport emissions supply and demand'$contents <- lapply(emip_scen$vars, function(var) { return(list("fill"=toString(cols[var]),"linetype"=NULL)) })
+  names(legend$'Comparison of passenger transport emissions supply and demand'$contents) <- emip_scen$vars
+  legend$'Comparison of passenger transport emissions supply and demand'$description <- "<p>Emissions from supply and demand, passenger transport  (includes electricity-related, hydrogen-related, synfuels-related emissions)</p>"
   
-  legend$'Comparison of passenger electricity production emissions'$contents <- lapply(emip_scen$vars, function(var) { return(list("fill"=toString(cols[var]),"linetype"=NULL)) })
-  names(legend$'Comparison of passenger electricity production emissions'$contents) <- emip_scen$vars
-  legend$'Comparison of passenger electricity production emissions'$description <- "<p>Emissions from electricity production and consumption in passenger transport</p>"
+  legend$'Comparison of passenger tailpipe emissions from fossil fuels'$contents <- lapply(emip_scen$vars, function(var) { return(list("fill"=toString(cols[var]),"linetype"=NULL)) })
+  names(legend$'Comparison of passenger tailpipe emissions from fossil fuels'$contents) <- emip_scen$vars
+  legend$'Comparison of passenger tailpipe emissions from fossil fuels'$description <- "<p>Tailpipe emissions of passenger transport, derived from fossil fuels consumption</p>"
   
   output$legend = legend
   return(output)