Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
condynet
PyPSD
Commits
6effaf24
Commit
6effaf24
authored
Dec 11, 2017
by
Frank Hellmann
Browse files
Merge remote-tracking branch 'origin/jonathan' into jonathan
# Conflicts: # PSD/complex_current_and_nodes.py
parents
6c513eb7
ec25fcd4
Changes
16
Hide whitespace changes
Inline
Side-by-side
PSD/__init__.py
View file @
6effaf24
from
complex_current_and_nodes
import
*
__all__
=
[
'complex_current_and_nodes'
]
\ No newline at end of file
# from complex_current_and_nodes import *
#
# __all__ = ['complex_current_and_nodes_new']
PSD/__psdcache__/compile_function.py
View file @
6effaf24
...
...
@@ -3,19 +3,19 @@ import numpy as np
from
numba
import
njit
,
float64
,
complex128
,
void
,
int32
data
=
np
.
array
([
(
917.3500559715608
-
688.0125419786704j
),
(
-
361.4901780229309
+
271.1176335171981j
),
(
-
243.93703618530333
+
182.95277713897744j
),
(
-
311.9228417633265
+
233.94213132249484j
),
(
329.75517104150185
-
247.3163782811263j
),
(
-
171.81082316872897
+
128.8581173765467j
),
(
-
157.94434787277285
+
118.45826090457962j
),
(
1037.3128799490623
-
777.9846599617964j
),
(
-
311.5428887780282
+
233.6571665835211j
),
(
-
725.769991171034
+
544.3274933782753j
),
(
559.0241715320362
-
419.2681286490271j
),
(
-
295.2113955187172
+
221.40854663903784j
),
(
-
263.8127760133191
+
197.85958200998928j
),
(
483.3387042085871
-
362.5040281564402j
),
(
-
135.20989510938443
+
101.4074213320383j
),
(
-
152.1132219456474
+
114.08491645923554j
),
(
-
196.01558715355526
+
147.0116903651664j
),
(
504.92515960327205
-
378.693869702454j
),
(
-
265.99789184047796
+
199.49841888035843j
),
(
-
238.9272677627941
+
179.19545082209552j
),
(
873.2707334443006
-
654.9530500832253j
),
(
-
873.2707334443006
+
654.9530500832253j
),
(
518.709711714901
-
389.03228378617564j
),
(
-
178.611694955647
+
133.95877121673524j
),
(
-
258.76775977701664
+
194.07581983276245j
),
(
-
81.33025698223732
+
60.99769273667797j
),
(
599.8520854664337
-
449.88906409982513j
),
(
-
166.50137706101015
+
124.87603279575757j
),
(
-
180.3565098098578
+
135.26738235739333j
),
(
-
141.86258018832407
+
106.39693514124302j
),
(
-
111.13161840724166
+
83.34871380543122j
),
(
-
171.81082316872897
+
128.8581173765467j
),
(
493.50130017307174
-
370.1259751298037j
),
(
-
114.2942812025076
+
85.72071090188068j
),
(
-
207.39619580183515
+
155.5471468513763j
),
(
-
114.2942812025076
+
85.72071090188068j
),
(
370.73582261295365
-
278.0518669597152j
),
(
-
95.25620472060842
+
71.4421535404563j
),
(
-
161.18533668983764
+
120.88900251737822j
),
(
-
135.20989510938443
+
101.4074213320383j
),
(
135.20989510938443
-
101.4074213320383j
),
(
660.6325929949562
-
495.47444474621705j
),
(
-
385.5844230505761
+
289.188317287932j
),
(
-
275.04816994438005
+
206.286127458285j
),
(
-
166.50137706101015
+
124.87603279575757j
),
(
312.1590664869168
-
234.11929986518751j
),
(
-
145.65768942590663
+
109.24326706942995j
),
(
-
180.3565098098578
+
135.26738235739333j
),
(
-
385.5844230505761
+
289.188317287932j
),
(
565.9409328604339
-
424.45569964532535j
),
(
374.15970010700005
-
280.61977508025j
),
(
-
170.82586457026258
+
128.11939842769692j
),
(
-
203.33383553673747
+
152.5003766525531j
),
(
-
157.94434787277285
+
118.45826090457962j
),
(
-
152.1132219456474
+
114.08491645923554j
),
(
310.05756981842023
-
232.54317736381518j
),
(
216.25412595643326
-
162.1905944673249j
),
(
-
117.3791373779949
+
88.03435303349615j
),
(
-
98.87498857843835
+
74.15624143382874j
),
(
239.20616594658168
-
179.4046244599362j
),
(
-
106.31153743731838
+
79.73365307798876j
),
(
-
132.8946285092633
+
99.67097138194744j
),
(
318.4257116599883
-
238.81928374499114j
),
(
-
101.13647535065874
+
75.85235651299404j
),
(
-
134.94382213778448
+
101.20786660333833j
),
(
-
82.34541417154504
+
61.75906062865877j
),
(
-
361.4901780229309
+
271.1176335171981j
),
(
-
207.39619580183515
+
155.5471468513763j
),
(
568.886373824766
-
426.6647803685744j
),
(
465.6306642108543
-
349.2229981581407j
),
(
-
272.3908766257109
+
204.29315746928313j
),
(
-
193.23978758514343
+
144.92984068885755j
),
(
-
272.3908766257109
+
204.29315746928313j
),
(
434.7098819843881
-
326.032411488291j
),
(
-
162.3190053586772
+
121.73925401900787j
),
(
-
106.31153743731838
+
79.73365307798876j
),
(
606.5569762541638
-
454.9177321906227j
),
(
-
155.8343953893149
+
116.87579654198615j
),
(
-
344.4110434275305
+
258.3082825706478j
),
(
235.42037602060643
-
176.56528201545478j
),
(
-
235.42037602060643
+
176.56528201545478j
),
(
662.6037320067528
-
496.95279900506443j
),
(
-
120.34430784604574
+
90.25823088453429j
),
(
-
223.32463882958308
+
167.49347912218727j
),
(
-
318.934785331124
+
239.20108899834293j
),
(
418.15376708817826
-
313.6153253161336j
),
(
-
418.15376708817826
+
313.6153253161336j
),
(
611.4213542525322
-
458.566015689399j
),
(
-
134.62817386490303
+
100.97113039867726j
),
(
-
476.79318038762915
+
357.5948852907218j
),
(
-
311.5428887780282
+
233.6571665835211j
),
(
700.3130739260263
-
525.2348054445196j
),
(
-
122.17519929163252
+
91.63139946872437j
),
(
-
266.59498585636555
+
199.94623939227412j
),
(
-
132.8946285092633
+
99.67097138194744j
),
(
-
235.42037602060643
+
176.56528201545478j
),
(
518.0830639380015
-
388.562297953501j
),
(
-
149.76805940813176
+
112.3260445560988j
),
(
-
178.611694955647
+
133.95877121673524j
),
(
437.8241387649764
-
328.36810407373224j
),
(
-
259.2124438093294
+
194.409332856997j
),
(
-
155.8343953893149
+
116.87579654198615j
),
(
432.5776749545746
-
324.4332562159309j
),
(
-
276.74327956525974
+
207.55745967394475j
),
(
750.2315528659087
-
562.6736646494313j
),
(
-
156.3776087859298
+
117.2832065894473j
),
(
-
340.24285927813787
+
255.18214445860332j
),
(
-
253.61108480184103
+
190.20831360138072j
),
(
-
156.3776087859298
+
117.2832065894473j
),
(
258.1843699194159
-
193.63827743956182j
),
(
-
101.80676113348605
+
76.35507085011452j
),
(
147.82460961816014
-
110.86845721362008j
),
(
-
147.82460961816014
+
110.86845721362008j
),
(
-
265.99789184047796
+
199.49841888035843j
),
(
414.51113132419863
-
310.8833484931489j
),
(
-
148.51323948372067
+
111.38492961279049j
),
(
402.4262514844603
-
301.81968861334514j
),
(
-
170.07227340910754
+
127.55420505683061j
),
(
-
232.35397807535279
+
174.26548355651454j
),
(
982.1859400569545
-
736.6394550427156j
),
(
-
446.8839998593799
+
335.16299989453483j
),
(
-
535.3019401975745
+
401.4764551481807j
),
(
-
446.8839998593799
+
335.16299989453483j
),
(
1359.7775612491803
-
1019.8331709368849j
),
(
-
299.3295200635879
+
224.49714004769086j
),
(
-
613.5640413262125
+
460.1730309946593j
),
(
67.36091300761294
-
50.520684755709695j
),
(
-
67.36091300761294
+
50.520684755709695j
),
(
-
295.2113955187172
+
221.40854663903784j
),
(
478.2655250026751
-
358.6991437520062j
),
(
-
183.05412948395787
+
137.29059711296838j
),
(
170.63083777176442
-
127.97312832882328j
),
(
-
170.63083777176442
+
127.97312832882328j
),
(
928.193436494605
-
696.1450773709536j
),
(
-
113.79771503134498
+
85.3482862735087j
),
(
-
814.39572146326
+
610.7967910974448j
),
(
161.02222848586334
-
120.76667136439747j
),
(
-
161.02222848586334
+
120.76667136439747j
),
(
-
340.24285927813787
+
255.18214445860332j
),
(
340.24285927813787
-
255.18214445860332j
),
(
405.7833395295494
-
304.33750464716195j
),
(
-
405.7833395295494
+
304.33750464716195j
),
(
-
258.76775977701664
+
194.07581983276245j
),
(
377.1428190521045
-
282.85711428907837j
),
(
-
118.37505927508792
+
88.78129445631592j
),
(
210.02936793635945
-
157.52202595226956j
),
(
-
210.02936793635945
+
157.52202595226956j
),
(
996.5540941808346
-
747.4155706356258j
),
(
-
576.8897752572153
+
432.6673314429114j
),
(
-
198.8688437911477
+
149.15163284336072j
),
(
-
220.7954751324716
+
165.59660634935366j
),
(
-
113.79771503134498
+
85.3482862735087j
),
(
-
161.02222848586334
+
120.76667136439747j
),
(
274.81994351720834
-
206.11495763790617j
),
(
-
725.769991171034
+
544.3274933782753j
),
(
-
134.62817386490303
+
100.97113039867726j
),
(
1002.7945740645662
-
752.0959305484243j
),
(
-
142.39640902862908
+
106.7973067714718j
),
(
106.29686017774306
-
79.72264513330728j
),
(
-
106.29686017774306
+
79.72264513330728j
),
(
-
117.3791373779949
+
88.03435303349615j
),
(
550.2820287644463
-
412.71152157333455j
),
(
-
432.90289138645136
+
324.6771685398384j
),
(
-
238.9272677627941
+
179.19545082209552j
),
(
-
193.23978758514343
+
144.92984068885755j
),
(
432.16705534793755
-
324.12529151095305j
),
(
-
145.65768942590663
+
109.24326706942995j
),
(
255.72566197731274
-
191.79424648298453j
),
(
-
110.06797255140611
+
82.55097941355457j
),
(
332.25319265863345
-
249.189894493975j
),
(
-
215.03962986896448
+
161.27972240172332j
),
(
-
117.21356278966894
+
87.91017209225168j
),
(
-
98.87498857843835
+
74.15624143382874j
),
(
419.2066422937189
-
314.40498172028913j
),
(
-
320.3316537152806
+
240.24874028646036j
),
(
-
170.82586457026258
+
128.11939842769692j
),
(
-
432.90289138645136
+
324.6771685398384j
),
(
840.2007460491923
-
630.150559536894j
),
(
-
236.47199009247834
+
177.35399256935872j
),
(
-
814.39572146326
+
610.7967910974448j
),
(
954.3427866829073
-
715.7570900121804j
),
(
-
139.94706521964736
+
104.9602989147355j
),
(
-
203.33383553673747
+
152.5003766525531j
),
(
306.469736719372
-
229.85230253952898j
),
(
-
103.13590118263456
+
77.35192588697589j
),
(
-
253.61108480184103
+
190.20831360138072j
),
(
669.9877723079198
-
502.4908292309398j
),
(
-
416.37668750607884
+
312.2825156295591j
),
(
-
139.94706521964736
+
104.9602989147355j
),
(
321.9730916056469
-
241.47981870423513j
),
(
-
182.02602638599956
+
136.51951978949964j
),
(
-
141.86258018832407
+
106.39693514124302j
),
(
-
535.3019401975745
+
401.4764551481807j
),
(
677.1645203858985
-
507.87339028942375j
),
(
-
101.13647535065874
+
75.85235651299404j
),
(
-
170.07227340910754
+
127.55420505683061j
),
(
271.2087487597663
-
203.40656156982465j
),
(
131.5122876630254
-
98.63421574726904j
),
(
-
131.5122876630254
+
98.63421574726904j
),
(
-
263.8127760133191
+
197.85958200998928j
),
(
-
149.76805940813176
+
112.3260445560988j
),
(
413.58083542145084
-
310.1856265660881j
),
(
271.78414237185757
-
203.83810677889312j
),
(
-
168.20849069362902
+
126.15636802022172j
),
(
-
103.57565167822857
+
77.68173875867141j
),
(
-
134.94382213778448
+
101.20786660333833j
),
(
134.94382213778448
-
101.20786660333833j
),
(
-
196.01558715355526
+
147.0116903651664j
),
(
-
122.17519929163252
+
91.63139946872437j
),
(
318.19078644518777
-
238.64308983389077j
),
(
-
67.36091300761294
+
50.520684755709695j
),
(
-
118.37505927508792
+
88.78129445631592j
),
(
-
182.02602638599956
+
136.51951978949964j
),
(
367.7619986687004
-
275.82149900152524j
),
(
-
576.8897752572153
+
432.6673314429114j
),
(
-
215.03962986896448
+
161.27972240172332j
),
(
791.9294051261797
-
593.9470538446348j
),
(
-
299.3295200635879
+
224.49714004769086j
),
(
299.3295200635879
-
224.49714004769086j
),
(
-
198.8688437911477
+
149.15163284336072j
),
(
341.59039994755847
-
256.19279996066876j
),
(
-
142.7215561564108
+
107.04116711730806j
),
(
-
103.13590118263456
+
77.35192588697589j
),
(
-
416.37668750607884
+
312.2825156295591j
),
(
519.5125886887134
-
389.634441516535j
),
(
-
168.20849069362902
+
126.15636802022172j
),
(
274.25661642339185
-
205.6924623175438j
),
(
-
106.04812572976283
+
79.5360942973221j
),
(
-
147.82460961816014
+
110.86845721362008j
),
(
265.81487960809056
-
199.3611597060679j
),
(
-
117.99026998993044
+
88.4927024924478j
),
(
-
120.34430784604574
+
90.25823088453429j
),
(
120.34430784604574
-
90.25823088453429j
),
(
-
266.59498585636555
+
199.94623939227412j
),
(
-
232.35397807535279
+
174.26548355651454j
),
(
498.94896393171837
-
374.21172294878863j
),
(
-
220.7954751324716
+
165.59660634935366j
),
(
220.7954751324716
-
165.59660634935366j
),
(
-
142.39640902862908
+
106.7973067714718j
),
(
142.39640902862908
-
106.7973067714718j
),
(
-
275.04816994438005
+
206.286127458285j
),
(
275.04816994438005
-
206.286127458285j
),
(
-
223.32463882958308
+
167.49347912218727j
),
(
530.1368236889259
-
397.6026177666944j
),
(
-
126.76454015136028
+
95.07340511352018j
),
(
-
180.04764470798256
+
135.0357335309869j
),
(
-
82.34541417154504
+
61.75906062865877j
),
(
-
405.7833395295494
+
304.33750464716195j
),
(
488.1287537010944
-
366.0965652758207j
),
(
-
243.93703618530333
+
182.95277713897744j
),
(
-
344.4110434275305
+
258.3082825706478j
),
(
588.3480796128338
-
441.2610597096252j
),
(
-
170.63083777176442
+
127.97312832882328j
),
(
-
210.02936793635945
+
157.52202595226956j
),
(
-
106.04812572976283
+
79.5360942973221j
),
(
486.70833143788667
-
365.03124857841493j
),
(
-
110.06797255140611
+
82.55097941355457j
),
(
-
103.57565167822857
+
77.68173875867141j
),
(
213.64362422963467
-
160.232718172226j
),
(
-
111.13161840724166
+
83.34871380543122j
),
(
-
95.25620472060842
+
71.4421535404563j
),
(
206.38782312785008
-
154.79086734588753j
),
(
-
476.79318038762915
+
357.5948852907218j
),
(
-
259.2124438093294
+
194.409332856997j
),
(
736.0056241969585
-
552.0042181477188j
),
(
-
161.18533668983764
+
120.88900251737822j
),
(
-
162.3190053586772
+
121.73925401900787j
),
(
323.50434204851484
-
242.6282565363861j
),
(
-
101.80676113348605
+
76.35507085011452j
),
(
-
142.7215561564108
+
107.04116711730806j
),
(
244.52831728989685
-
183.39623796742256j
),
(
-
418.15376708817826
+
313.6153253161336j
),
(
-
236.47199009247834
+
177.35399256935872j
),
(
-
117.99026998993044
+
88.4927024924478j
),
(
772.616027170587
-
579.4620203779401j
),
(
-
148.51323948372067
+
111.38492961279049j
),
(
-
117.21356278966894
+
87.91017209225168j
),
(
265.7268022733896
-
199.29510170504216j
),
(
-
318.934785331124
+
239.20108899834293j
),
(
318.934785331124
-
239.20108899834293j
),
(
-
613.5640413262125
+
460.1730309946593j
),
(
-
126.76454015136028
+
95.07340511352018j
),
(
740.3285814775728
-
555.2464361081795j
),
(
-
180.04764470798256
+
135.0357335309869j
),
(
180.04764470798256
-
135.0357335309869j
),
(
-
276.74327956525974
+
207.55745967394475j
),
(
-
106.29686017774306
+
79.72264513330728j
),
(
383.0401397430028
-
287.28010480725203j
),
(
-
311.9228417633265
+
233.94213132249484j
),
(
-
873.2707334443006
+
654.9530500832253j
),
(
1185.1935752076272
-
888.8951814057202j
),
(
-
320.3316537152806
+
240.24874028646036j
),
(
320.3316537152806
-
240.24874028646036j
),
(
-
81.33025698223732
+
60.99769273667797j
),
(
-
131.5122876630254
+
98.63421574726904j
),
(
212.8425446452627
-
159.631908483947j
),
(
-
183.05412948395787
+
137.29059711296838j
),
(
183.05412948395787
-
137.29059711296838j
)
])
indptr
=
np
.
array
([
0
,
4
,
7
,
10
,
13
,
17
,
20
,
22
,
26
,
31
,
35
,
39
,
41
,
44
,
47
,
50
,
53
,
56
,
59
,
62
,
66
,
69
,
72
,
75
,
79
,
81
,
85
,
87
,
90
,
94
,
98
,
101
,
104
,
108
,
111
,
113
,
116
,
119
,
122
,
126
,
128
,
131
,
133
,
136
,
138
,
140
,
142
,
145
,
147
,
151
,
154
,
158
,
160
,
163
,
166
,
169
,
172
,
175
,
179
,
182
,
185
,
188
,
191
,
194
,
197
,
199
,
202
,
205
,
207
,
210
,
214
,
217
,
219
,
222
,
225
,
228
,
231
,
233
,
236
,
238
,
240
,
242
,
246
,
249
,
252
,
256
,
259
,
262
,
265
,
268
,
271
,
275
,
278
,
280
,
283
,
285
,
288
,
291
,
293
,
296
,
298
])
indices
=
np
.
array
([
0
,
20
,
83
,
96
,
1
,
9
,
16
,
2
,
28
,
50
,
3
,
40
,
65
,
4
,
11
,
16
,
68
,
5
,
35
,
53
,
6
,
96
,
7
,
30
,
46
,
98
,
8
,
13
,
14
,
62
,
86
,
1
,
9
,
10
,
20
,
9
,
10
,
86
,
88
,
4
,
11
,
12
,
14
,
80
,
8
,
13
,
54
,
8
,
12
,
14
,
15
,
57
,
59
,
1
,
4
,
16
,
17
,
52
,
56
,
18
,
23
,
29
,
19
,
63
,
67
,
82
,
0
,
9
,
20
,
21
,
22
,
53
,
21
,
22
,
88
,
18
,
23
,
31
,
83
,
24
,
29
,
25
,
76
,
81
,
92
,
26
,
90
,
27
,
50
,
87
,
2
,
28
,
68
,
77
,
18
,
24
,
29
,
65
,
7
,
30
,
87
,
23
,
31
,
95
,
32
,
33
,
44
,
60
,
32
,
33
,
89
,
34
,
75
,
5
,
35
,
91
,
36
,
63
,
77
,
37
,
38
,
62
,
37
,
38
,
71
,
93
,
39
,
69
,
3
,
40
,
99
,
41
,
84
,
42
,
49
,
58
,
43
,
49
,
32
,
44
,
45
,
82
,
7
,
46
,
69
,
47
,
84
,
48
,
70
,
72
,
78
,
42
,
43
,
49
,
2
,
27
,
50
,
79
,
51
,
95
,
17
,
52
,
57
,
5
,
21
,
53
,
13
,
54
,
85
,
55
,
70
,
91
,
17
,
56
,
97
,
15
,
52
,
57
,
90
,
42
,
58
,
61
,
15
,
59
,
73
,
32
,
60
,
73
,
58
,
61
,
69
,
8
,
37
,
62
,
19
,
36
,
63
,
64
,
98
,
3
,
29
,
65
,
66
,
74
,
85
,
19
,
67
,
4
,
28
,
68
,
39
,
46
,
61
,
69
,
48
,
55
,
70
,
38
,
71
,
48
,
72
,
89
,
59
,
60
,
73
,
66
,
74
,
84
,
34
,
75
,
90
,
25
,
76
,
28
,
36
,
77
,
48
,
78
,
50
,
79
,
12
,
80
,
25
,
81
,
93
,
94
,
19
,
45
,
82
,
0
,
23
,
83
,
41
,
47
,
74
,
84
,
54
,
66
,
85
,
8
,
10
,
86
,
27
,
30
,
87
,
10
,
22
,
88
,
33
,
72
,
89
,
26
,
57
,
75
,
90
,
35
,
55
,
91
,
25
,
92
,
38
,
81
,
93
,
81
,
94
,
31
,
51
,
95
,
0
,
6
,
96
,
56
,
97
,
7
,
64
,
98
,
40
,
99
])
data
=
np
.
array
([
8j
,
-
8j
,
-
8j
,
8j
])
indptr
=
np
.
array
([
0
,
2
,
4
])
indices
=
np
.
array
([
0
,
1
,
0
,
1
])
@
njit
(
float64
[:](
float64
[:],
float64
),
cache
=
True
)
def
network_rhs_numba
(
y
,
t
):
dydt
=
np
.
empty
(
200
+
100
)
dydt
=
np
.
empty
(
4
+
2
)
v
=
y
[:
200
].
view
(
np
.
complex128
)
omega
=
y
[
200
:]
dv
=
dydt
[:
200
].
view
(
np
.
complex128
)
domega
=
dydt
[
200
:]
v
=
y
[:
4
].
view
(
np
.
complex128
)
omega
=
y
[
4
:]
dv
=
dydt
[:
4
].
view
(
np
.
complex128
)
domega
=
dydt
[
4
:]
i
=
np
.
zeros
(
101
-
1
,
dtype
=
np
.
complex128
)
i
=
np
.
zeros
(
3
-
1
,
dtype
=
np
.
complex128
)
index
=
0
for
row
,
number_of_entries
in
enumerate
(
indptr
[
1
:]):
while
index
<
number_of_entries
:
...
...
@@ -23,705 +23,9 @@ def network_rhs_numba(y, t):
index
+=
1
v_abs
=
np
.
absolute
(
v
[
0
])
if
v_abs
==
0
:
dv
[
0
]
=
0
else
:
dv
[
0
]
=
1.j
*
omega
[
0
]
*
v
[
0
]
+
2.0
*
(
v
[
0
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
0
]
*
i
[
0
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
0
]
=
2.0
*
(
0
-
omega
[
0
])
-
2.0
*
0.0407394824932
*
(
(
v
[
0
]
*
i
[
0
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
1
])
if
v_abs
==
0
:
dv
[
1
]
=
0
else
:
dv
[
1
]
=
1.j
*
omega
[
1
]
*
v
[
1
]
+
2.0
*
(
v
[
1
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
1
]
*
i
[
1
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
1
]
=
2.0
*
(
0
-
omega
[
1
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
1
]
*
i
[
1
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
2
])
if
v_abs
==
0
:
dv
[
2
]
=
0
else
:
dv
[
2
]
=
1.j
*
omega
[
2
]
*
v
[
2
]
+
2.0
*
(
v
[
2
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
2
]
*
i
[
2
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
2
]
=
2.0
*
(
0
-
omega
[
2
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
2
]
*
i
[
2
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
3
])
if
v_abs
==
0
:
dv
[
3
]
=
0
else
:
dv
[
3
]
=
1.j
*
omega
[
3
]
*
v
[
3
]
+
2.0
*
(
v
[
3
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
3
]
*
i
[
3
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
3
]
=
2.0
*
(
0
-
omega
[
3
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
3
]
*
i
[
3
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
4
])
if
v_abs
==
0
:
dv
[
4
]
=
0
else
:
dv
[
4
]
=
1.j
*
omega
[
4
]
*
v
[
4
]
+
2.0
*
(
v
[
4
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
4
]
*
i
[
4
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
4
]
=
2.0
*
(
0
-
omega
[
4
])
-
2.0
*
0.0407394824932
*
(
(
v
[
4
]
*
i
[
4
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
5
])
if
v_abs
==
0
:
dv
[
5
]
=
0
else
:
dv
[
5
]
=
1.j
*
omega
[
5
]
*
v
[
5
]
+
2.0
*
(
v
[
5
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
5
]
*
i
[
5
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
5
]
=
2.0
*
(
0
-
omega
[
5
])
-
2.0
*
0.0407394824932
*
(
(
v
[
5
]
*
i
[
5
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
6
])
if
v_abs
==
0
:
dv
[
6
]
=
0
else
:
dv
[
6
]
=
1.j
*
omega
[
6
]
*
v
[
6
]
+
2.0
*
(
v
[
6
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
6
]
*
i
[
6
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
6
]
=
2.0
*
(
0
-
omega
[
6
])
-
2.0
*
0.0407394824932
*
(
(
v
[
6
]
*
i
[
6
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
7
])
if
v_abs
==
0
:
dv
[
7
]
=
0
else
:
dv
[
7
]
=
1.j
*
omega
[
7
]
*
v
[
7
]
+
2.0
*
(
v
[
7
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
7
]
*
i
[
7
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
7
]
=
2.0
*
(
0
-
omega
[
7
])
-
2.0
*
0.0407394824932
*
(
(
v
[
7
]
*
i
[
7
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
8
])
if
v_abs
==
0
:
dv
[
8
]
=
0
else
:
dv
[
8
]
=
1.j
*
omega
[
8
]
*
v
[
8
]
+
2.0
*
(
v
[
8
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
8
]
*
i
[
8
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
8
]
=
2.0
*
(
0
-
omega
[
8
])
-
2.0
*
0.0407394824932
*
(
(
v
[
8
]
*
i
[
8
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
9
])
if
v_abs
==
0
:
dv
[
9
]
=
0
else
:
dv
[
9
]
=
1.j
*
omega
[
9
]
*
v
[
9
]
+
2.0
*
(
v
[
9
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
9
]
*
i
[
9
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
9
]
=
2.0
*
(
0
-
omega
[
9
])
-
2.0
*
0.0407394824932
*
(
(
v
[
9
]
*
i
[
9
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
10
])
if
v_abs
==
0
:
dv
[
10
]
=
0
else
:
dv
[
10
]
=
1.j
*
omega
[
10
]
*
v
[
10
]
+
2.0
*
(
v
[
10
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
10
]
*
i
[
10
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
10
]
=
2.0
*
(
0
-
omega
[
10
])
-
2.0
*
0.0407394824932
*
(
(
v
[
10
]
*
i
[
10
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
11
])
if
v_abs
==
0
:
dv
[
11
]
=
0
else
:
dv
[
11
]
=
1.j
*
omega
[
11
]
*
v
[
11
]
+
2.0
*
(
v
[
11
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
11
]
*
i
[
11
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
11
]
=
2.0
*
(
0
-
omega
[
11
])
-
2.0
*
0.0407394824932
*
(
(
v
[
11
]
*
i
[
11
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
12
])
if
v_abs
==
0
:
dv
[
12
]
=
0
else
:
dv
[
12
]
=
1.j
*
omega
[
12
]
*
v
[
12
]
+
2.0
*
(
v
[
12
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
12
]
*
i
[
12
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
12
]
=
2.0
*
(
0
-
omega
[
12
])
-
2.0
*
0.0407394824932
*
(
(
v
[
12
]
*
i
[
12
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
13
])
if
v_abs
==
0
:
dv
[
13
]
=
0
else
:
dv
[
13
]
=
1.j
*
omega
[
13
]
*
v
[
13
]
+
2.0
*
(
v
[
13
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
13
]
*
i
[
13
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
13
]
=
2.0
*
(
0
-
omega
[
13
])
-
2.0
*
0.0407394824932
*
(
(
v
[
13
]
*
i
[
13
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
14
])
if
v_abs
==
0
:
dv
[
14
]
=
0
else
:
dv
[
14
]
=
1.j
*
omega
[
14
]
*
v
[
14
]
+
2.0
*
(
v
[
14
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
14
]
*
i
[
14
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
14
]
=
2.0
*
(
0
-
omega
[
14
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
14
]
*
i
[
14
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
15
])
if
v_abs
==
0
:
dv
[
15
]
=
0
else
:
dv
[
15
]
=
1.j
*
omega
[
15
]
*
v
[
15
]
+
2.0
*
(
v
[
15
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
15
]
*
i
[
15
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
15
]
=
2.0
*
(
0
-
omega
[
15
])
-
2.0
*
0.0407394824932
*
(
(
v
[
15
]
*
i
[
15
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
16
])
if
v_abs
==
0
:
dv
[
16
]
=
0
else
:
dv
[
16
]
=
1.j
*
omega
[
16
]
*
v
[
16
]
+
2.0
*
(
v
[
16
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
16
]
*
i
[
16
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
16
]
=
2.0
*
(
0
-
omega
[
16
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
16
]
*
i
[
16
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
17
])
if
v_abs
==
0
:
dv
[
17
]
=
0
else
:
dv
[
17
]
=
1.j
*
omega
[
17
]
*
v
[
17
]
+
2.0
*
(
v
[
17
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
17
]
*
i
[
17
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
17
]
=
2.0
*
(
0
-
omega
[
17
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
17
]
*
i
[
17
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
18
])
if
v_abs
==
0
:
dv
[
18
]
=
0
else
:
dv
[
18
]
=
1.j
*
omega
[
18
]
*
v
[
18
]
+
2.0
*
(
v
[
18
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
18
]
*
i
[
18
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
18
]
=
2.0
*
(
0
-
omega
[
18
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
18
]
*
i
[
18
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
19
])
if
v_abs
==
0
:
dv
[
19
]
=
0
else
:
dv
[
19
]
=
1.j
*
omega
[
19
]
*
v
[
19
]
+
2.0
*
(
v
[
19
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
19
]
*
i
[
19
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
19
]
=
2.0
*
(
0
-
omega
[
19
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
19
]
*
i
[
19
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
20
])
if
v_abs
==
0
:
dv
[
20
]
=
0
else
:
dv
[
20
]
=
1.j
*
omega
[
20
]
*
v
[
20
]
+
2.0
*
(
v
[
20
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
20
]
*
i
[
20
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
20
]
=
2.0
*
(
0
-
omega
[
20
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
20
]
*
i
[
20
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
21
])
if
v_abs
==
0
:
dv
[
21
]
=
0
else
:
dv
[
21
]
=
1.j
*
omega
[
21
]
*
v
[
21
]
+
2.0
*
(
v
[
21
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
21
]
*
i
[
21
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
21
]
=
2.0
*
(
0
-
omega
[
21
])
-
2.0
*
0.0407394824932
*
(
(
v
[
21
]
*
i
[
21
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
22
])
if
v_abs
==
0
:
dv
[
22
]
=
0
else
:
dv
[
22
]
=
1.j
*
omega
[
22
]
*
v
[
22
]
+
2.0
*
(
v
[
22
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
22
]
*
i
[
22
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
22
]
=
2.0
*
(
0
-
omega
[
22
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
22
]
*
i
[
22
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
23
])
if
v_abs
==
0
:
dv
[
23
]
=
0
else
:
dv
[
23
]
=
1.j
*
omega
[
23
]
*
v
[
23
]
+
2.0
*
(
v
[
23
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
23
]
*
i
[
23
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
23
]
=
2.0
*
(
0
-
omega
[
23
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
23
]
*
i
[
23
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
24
])
if
v_abs
==
0
:
dv
[
24
]
=
0
else
:
dv
[
24
]
=
1.j
*
omega
[
24
]
*
v
[
24
]
+
2.0
*
(
v
[
24
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
24
]
*
i
[
24
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
24
]
=
2.0
*
(
0
-
omega
[
24
])
-
2.0
*
0.0407394824932
*
(
(
v
[
24
]
*
i
[
24
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
25
])
if
v_abs
==
0
:
dv
[
25
]
=
0
else
:
dv
[
25
]
=
1.j
*
omega
[
25
]
*
v
[
25
]
+
2.0
*
(
v
[
25
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
25
]
*
i
[
25
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
25
]
=
2.0
*
(
0
-
omega
[
25
])
-
2.0
*
0.0407394824932
*
(
(
v
[
25
]
*
i
[
25
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
26
])
if
v_abs
==
0
:
dv
[
26
]
=
0
else
:
dv
[
26
]
=
1.j
*
omega
[
26
]
*
v
[
26
]
+
2.0
*
(
v
[
26
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
26
]
*
i
[
26
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
26
]
=
2.0
*
(
0
-
omega
[
26
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
26
]
*
i
[
26
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
27
])
if
v_abs
==
0
:
dv
[
27
]
=
0
else
:
dv
[
27
]
=
1.j
*
omega
[
27
]
*
v
[
27
]
+
2.0
*
(
v
[
27
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
27
]
*
i
[
27
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
27
]
=
2.0
*
(
0
-
omega
[
27
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
27
]
*
i
[
27
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
28
])
if
v_abs
==
0
:
dv
[
28
]
=
0
else
:
dv
[
28
]
=
1.j
*
omega
[
28
]
*
v
[
28
]
+
2.0
*
(
v
[
28
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
28
]
*
i
[
28
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
28
]
=
2.0
*
(
0
-
omega
[
28
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
28
]
*
i
[
28
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
29
])
if
v_abs
==
0
:
dv
[
29
]
=
0
else
:
dv
[
29
]
=
1.j
*
omega
[
29
]
*
v
[
29
]
+
2.0
*
(
v
[
29
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
29
]
*
i
[
29
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
29
]
=
2.0
*
(
0
-
omega
[
29
])
-
2.0
*
0.0407394824932
*
(
(
v
[
29
]
*
i
[
29
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
30
])
if
v_abs
==
0
:
dv
[
30
]
=
0
else
:
dv
[
30
]
=
1.j
*
omega
[
30
]
*
v
[
30
]
+
2.0
*
(
v
[
30
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
30
]
*
i
[
30
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
30
]
=
2.0
*
(
0
-
omega
[
30
])
-
2.0
*
0.0407394824932
*
(
(
v
[
30
]
*
i
[
30
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
31
])
if
v_abs
==
0
:
dv
[
31
]
=
0
else
:
dv
[
31
]
=
1.j
*
omega
[
31
]
*
v
[
31
]
+
2.0
*
(
v
[
31
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
31
]
*
i
[
31
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
31
]
=
2.0
*
(
0
-
omega
[
31
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
31
]
*
i
[
31
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
32
])
if
v_abs
==
0
:
dv
[
32
]
=
0
else
:
dv
[
32
]
=
1.j
*
omega
[
32
]
*
v
[
32
]
+
2.0
*
(
v
[
32
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
32
]
*
i
[
32
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
32
]
=
2.0
*
(
0
-
omega
[
32
])
-
2.0
*
0.0407394824932
*
(
(
v
[
32
]
*
i
[
32
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
33
])
if
v_abs
==
0
:
dv
[
33
]
=
0
else
:
dv
[
33
]
=
1.j
*
omega
[
33
]
*
v
[
33
]
+
2.0
*
(
v
[
33
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
33
]
*
i
[
33
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
33
]
=
2.0
*
(
0
-
omega
[
33
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
33
]
*
i
[
33
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
34
])
if
v_abs
==
0
:
dv
[
34
]
=
0
else
:
dv
[
34
]
=
1.j
*
omega
[
34
]
*
v
[
34
]
+
2.0
*
(
v
[
34
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
34
]
*
i
[
34
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
34
]
=
2.0
*
(
0
-
omega
[
34
])
-
2.0
*
0.0407394824932
*
(
(
v
[
34
]
*
i
[
34
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
35
])
if
v_abs
==
0
:
dv
[
35
]
=
0
else
:
dv
[
35
]
=
1.j
*
omega
[
35
]
*
v
[
35
]
+
2.0
*
(
v
[
35
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
35
]
*
i
[
35
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
35
]
=
2.0
*
(
0
-
omega
[
35
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
35
]
*
i
[
35
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
36
])
if
v_abs
==
0
:
dv
[
36
]
=
0
else
:
dv
[
36
]
=
1.j
*
omega
[
36
]
*
v
[
36
]
+
2.0
*
(
v
[
36
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
36
]
*
i
[
36
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
36
]
=
2.0
*
(
0
-
omega
[
36
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
36
]
*
i
[
36
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
37
])
if
v_abs
==
0
:
dv
[
37
]
=
0
else
:
dv
[
37
]
=
1.j
*
omega
[
37
]
*
v
[
37
]
+
2.0
*
(
v
[
37
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
37
]
*
i
[
37
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
37
]
=
2.0
*
(
0
-
omega
[
37
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
37
]
*
i
[
37
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
38
])
if
v_abs
==
0
:
dv
[
38
]
=
0
else
:
dv
[
38
]
=
1.j
*
omega
[
38
]
*
v
[
38
]
+
2.0
*
(
v
[
38
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
38
]
*
i
[
38
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
38
]
=
2.0
*
(
0
-
omega
[
38
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
38
]
*
i
[
38
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
39
])
if
v_abs
==
0
:
dv
[
39
]
=
0
else
:
dv
[
39
]
=
1.j
*
omega
[
39
]
*
v
[
39
]
+
2.0
*
(
v
[
39
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
39
]
*
i
[
39
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
39
]
=
2.0
*
(
0
-
omega
[
39
])
-
2.0
*
0.0407394824932
*
(
(
v
[
39
]
*
i
[
39
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
40
])
if
v_abs
==
0
:
dv
[
40
]
=
0
else
:
dv
[
40
]
=
1.j
*
omega
[
40
]
*
v
[
40
]
+
2.0
*
(
v
[
40
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
40
]
*
i
[
40
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
40
]
=
2.0
*
(
0
-
omega
[
40
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
40
]
*
i
[
40
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
41
])
if
v_abs
==
0
:
dv
[
41
]
=
0
else
:
dv
[
41
]
=
1.j
*
omega
[
41
]
*
v
[
41
]
+
2.0
*
(
v
[
41
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
41
]
*
i
[
41
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
41
]
=
2.0
*
(
0
-
omega
[
41
])
-
2.0
*
0.0407394824932
*
(
(
v
[
41
]
*
i
[
41
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
42
])
if
v_abs
==
0
:
dv
[
42
]
=
0
else
:
dv
[
42
]
=
1.j
*
omega
[
42
]
*
v
[
42
]
+
2.0
*
(
v
[
42
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
42
]
*
i
[
42
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
42
]
=
2.0
*
(
0
-
omega
[
42
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
42
]
*
i
[
42
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
43
])
if
v_abs
==
0
:
dv
[
43
]
=
0
else
:
dv
[
43
]
=
1.j
*
omega
[
43
]
*
v
[
43
]
+
2.0
*
(
v
[
43
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
43
]
*
i
[
43
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
43
]
=
2.0
*
(
0
-
omega
[
43
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
43
]
*
i
[
43
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
44
])
if
v_abs
==
0
:
dv
[
44
]
=
0
else
:
dv
[
44
]
=
1.j
*
omega
[
44
]
*
v
[
44
]
+
2.0
*
(
v
[
44
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
44
]
*
i
[
44
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
44
]
=
2.0
*
(
0
-
omega
[
44
])
-
2.0
*
0.0407394824932
*
(
(
v
[
44
]
*
i
[
44
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
45
])
if
v_abs
==
0
:
dv
[
45
]
=
0
else
:
dv
[
45
]
=
1.j
*
omega
[
45
]
*
v
[
45
]
+
2.0
*
(
v
[
45
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
45
]
*
i
[
45
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
45
]
=
2.0
*
(
0
-
omega
[
45
])
-
2.0
*
0.0407394824932
*
(
(
v
[
45
]
*
i
[
45
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
46
])
if
v_abs
==
0
:
dv
[
46
]
=
0
else
:
dv
[
46
]
=
1.j
*
omega
[
46
]
*
v
[
46
]
+
2.0
*
(
v
[
46
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
46
]
*
i
[
46
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
46
]
=
2.0
*
(
0
-
omega
[
46
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
46
]
*
i
[
46
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
47
])
if
v_abs
==
0
:
dv
[
47
]
=
0
else
:
dv
[
47
]
=
1.j
*
omega
[
47
]
*
v
[
47
]
+
2.0
*
(
v
[
47
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
47
]
*
i
[
47
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
47
]
=
2.0
*
(
0
-
omega
[
47
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
47
]
*
i
[
47
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
48
])
if
v_abs
==
0
:
dv
[
48
]
=
0
else
:
dv
[
48
]
=
1.j
*
omega
[
48
]
*
v
[
48
]
+
2.0
*
(
v
[
48
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
48
]
*
i
[
48
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
48
]
=
2.0
*
(
0
-
omega
[
48
])
-
2.0
*
0.0407394824932
*
(
(
v
[
48
]
*
i
[
48
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
49
])
if
v_abs
==
0
:
dv
[
49
]
=
0
else
:
dv
[
49
]
=
1.j
*
omega
[
49
]
*
v
[
49
]
+
2.0
*
(
v
[
49
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
-
0.0192302587534
*
(
(
v
[
49
]
*
i
[
49
].
conjugate
()).
imag
-
-
0.192302587534
.
imag
)
)
domega
[
49
]
=
2.0
*
(
0
-
omega
[
49
])
-
2.0
*
-
0.0384605175068
*
(
(
v
[
49
]
*
i
[
49
].
conjugate
()).
real
-
-
0.192302587534
.
real
)
v_abs
=
np
.
absolute
(
v
[
50
])
if
v_abs
==
0
:
dv
[
50
]
=
0
else
:
dv
[
50
]
=
1.j
*
omega
[
50
]
*
v
[
50
]
+
2.0
*
(
v
[
50
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
50
]
*
i
[
50
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
50
]
=
2.0
*
(
0
-
omega
[
50
])
-
2.0
*
0.0407394824932
*
(
(
v
[
50
]
*
i
[
50
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
51
])
if
v_abs
==
0
:
dv
[
51
]
=
0
else
:
dv
[
51
]
=
1.j
*
omega
[
51
]
*
v
[
51
]
+
2.0
*
(
v
[
51
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
51
]
*
i
[
51
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)
domega
[
51
]
=
2.0
*
(
0
-
omega
[
51
])
-
2.0
*
0.0407394824932
*
(
(
v
[
51
]
*
i
[
51
].
conjugate
()).
real
-
0.203697412466
.
real
)
v_abs
=
np
.
absolute
(
v
[
52
])
if
v_abs
==
0
:
dv
[
52
]
=
0
else
:
dv
[
52
]
=
1.j
*
omega
[
52
]
*
v
[
52
]
+
2.0
*
(
v
[
52
]
/
v_abs
)
*
(
(
1.0
-
v_abs
)
-
0.0203697412466
*
(
(
v
[
52
]
*
i
[
52
].
conjugate
()).
imag
-
0.203697412466
.
imag
)
)