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We study the impact of uncertainty on optimal
greenhouse gas (GHG) emission policies for a stylized
emission problem. The results suggest that uncertainties
about the implementability of decisions on emission
reductions (or increases) call for more precautionary
policies. In contrast, uncertainties about the implications
of exceeding critical cumulated emission thresholds tend
to make early emission reductions less rewarding.
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The context in which these results have been derived

I Global GHG emissions have to be reduced to avoid dangerous
impacts of climate change.

I Reducing emissions implies different costs and benefits for
different countries.

I The highest global benefits are obtained if most countries
reduce emissions by certain “optimal” amounts.

I In this situation most countries face a free-ride option!

This is known since at least Hardin 1968.
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Two sides of the GHG emission problem

1 When and by how much global GHG emissions should be
reduced to avoid potentially dangerous future states?

I Temporal dimension, sequential decisions.
I One decision maker.
I The consequences of decisions are uncertain.
I ⇒ control theory, SDP, optimal policies under uncertainty.

2 How to make sure that (fair, agreed, optimal, etc.) emission
reduction quotas are actually implemented?

I Sequential and simultaneous decisions.
I More than one decision maker.
I Competition, free-riding options, uncertainty.
I ⇒ game theory, mechanism design, cooperation dynamics.

One would like to treat the problem as a whole but . . . how? Perhaps using open games?
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I . . . the outcome is not certain: one knows which next states
can happen but not which one will happen!

I Under this uncertainty, the decision maker seeks emission
controls that maximise a sum of rewards over a certain
number of decision steps.

It’s not really getting better, is it?
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I Decisions to increase/reduce emissions might actually not be
implemented.

I Efficient technologies for lowering the costs of reducing
emissions may or may not become available.

I Exceeding a certain threshold of cumulated emissions may or
may not yield potentially dangerous next states.

I What is the effect of these uncertainties on optimal emission
policies?

It seems that we need to compare optimal policies in two distinct cases. But what are policies?
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I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas? Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Their context

Optimal policies

I Informally, policies are functions that associates controls to
states

I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas? Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Their context

Optimal policies

I Informally, policies are functions that associates controls to
states

I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas? Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Their context

Optimal policies

I Informally, policies are functions that associates controls to
states

I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas? Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Their context

Optimal policies

I Informally, policies are functions that associates controls to
states

I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas? Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Their context

Optimal policies

I Informally, policies are functions that associates controls to
states

I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas?

Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Their context

Optimal policies

I Informally, policies are functions that associates controls to
states

I A policy for a given decision step is a decision rule: it tells
which control to take at that step for every state

I Two sequences of n policies can be compared for a given state
x by computing their respective sums of rewards for n decision
steps starting from x

I Optimal sequences of policies are sequences that are at least
as good as any other sequence for any x

Can we formalize these ideas? Can we study the impacts of uncertainties on policies with rigorous methods?



Understanding the impacts of uncertainty on optimal policies → Method

Method



Understanding the impacts of uncertainty on optimal policies → Method

Sequential decision problems

I A SDP can be specified in terms of four functions:

State : (t : N) → Type

Ctrl : (t : N) → (x : State t) → Type

next : (t : N) → (x : State t) → (y : Ctrl t x) →
M (State (t + 1))

Codomain of State, Ctrl! Dependently typed Ctrl and next!
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Policies

I Policies are functions from states to controls

Policy : (t : N) → Type
Policy t = (x : State t) → Ctrl t x

I Policy sequences are sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (t + 1) n → PolicySeq t (n + 1)

A word-by-word translation from English into math. Unfortunately, things are a bit more complicated: viability!
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Optimal policies

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how she adds them

⊕ : Val → Val → Val

I and on how she measures uncertain outcomes

meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = + and meas is the expected value function.
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Optimal policies
I With v, ⊕ and meas, one can compute the value of taking n

decisions starting from some initial state and according to a
policy sequence ps:

val : (x : State t) → PolicySeq t n → Val

val {t } {n = Z } x Nil = zero

val {t } {n = m + 1} x (p :: ps) = meas (fmap f mx ′) where
y : Ctrl t x
y = p x
mx ′ : M (State (t + 1))
mx ′ = next t x y
f : State (t + 1) → Val
f x ′ = reward t x y x ′ ⊕ val x ′ ps

Complexity?
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Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations! How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations! How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations! How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations! How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations! How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations!

How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Optimal policies

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq {t } {n} ps = (ps ′ : PolicySeq t n) →
(x : State t) →
val x ps ′ v val x ps

I ... compute verified optimal policy sequences

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I and, finally, best decisions!

Propositional types, proofs as computations! How to implement bi and biLemma?



Understanding the impacts of uncertainty on optimal policies → Method

Wrap-up

Given a problem (M, State, Ctrl , next, reward and meas) we can:

I Compute verified optimal policy sequences.

I Compute all possible trajectories from an initial state under a
given policy sequence.

For “small” problems!
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Let’s take a decision!

I Jump to “A stylized emission problem”

I Jump to “Method (cont’d)”

I Stop here!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

A stylized emission problem



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Controls

I At each decision step the decision maker has just two options:
low or high emissions:

Ctrl t x = {Low ,High}

I The idea is that low emissions, if implemented, increase the
cumulated emissions less than high emissions.

I Without lost of generality, we can take these increases to be
zero and one.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Controls

I At each decision step the decision maker has just two options:
low or high emissions:

Ctrl t x = {Low ,High}

I The idea is that low emissions, if implemented, increase the
cumulated emissions less than high emissions.

I Without lost of generality, we can take these increases to be
zero and one.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Controls

I At each decision step the decision maker has just two options:
low or high emissions:

Ctrl t x = {Low ,High}

I The idea is that low emissions, if implemented, increase the
cumulated emissions less than high emissions.

I Without lost of generality, we can take these increases to be
zero and one.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Controls

I At each decision step the decision maker has just two options:
low or high emissions:

Ctrl t x = {Low ,High}

I The idea is that low emissions, if implemented, increase the
cumulated emissions less than high emissions.

I Without lost of generality, we can take these increases to be
zero and one.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Controls

I At each decision step the decision maker has just two options:
low or high emissions:

Ctrl t x = {Low ,High}

I The idea is that low emissions, if implemented, increase the
cumulated emissions less than high emissions.

I Without lost of generality, we can take these increases to be
zero and one.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

States

I At each step, the decision maker has to choose between low
and high emissions on the basis of four data:

I The amount of cumulated emissions.

I The current emission level E = {Low ,High}.

I The availability of effective technologies for reducing emissions
T = {Available,Unavailable }.

I A “state of the world” W = {Good ,Bad }.

I Thus, states are just tuples

State t = ({0 . . t },E ,T ,W )
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Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Decision process

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainties

I Low/high emission decisions might not be implemented.

I After crN decision steps, efficient technologies may or may
not become available.

I Exceeding crE may or may not turn the world into a bad state.
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Uncertainties

I Low/high emission decisions might not be implemented:

I pLL – the probability of implementing low emissions when the
current emissions measures are low and low emissions are
chosen.

I pLH – the probability of implementing low emissions when the
current emissions measures are high and low emissions are
chosen.

I pHL – the probability of implementing high emissions when the
current emissions measures are low and high emissions are
chosen.

I pHH – the probability of implementing high emissions when
the current emissions measures are high and high emissions are
chosen.

I Constraints: pLH 6 pLL and pHL 6 pHH.
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Uncertainties

I After crN decision steps, efficient technologies may or may
not become available:

I pA1 – the probability that effective technologies become
available when the number of decision steps is 6 crN,

I pA2 – the probability that effective technologies become
available when the number of decision steps is > crN.

I Constraint: pA1 6 pA2 .
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I Given crN, crE and the probabilities pLL . . . pS2 , the
transition function can be defined by cases.
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I the current state is x = (e,H,U,G ),

I the decision maker has opted for low emissions,

I e is smaller or equal to crE and

I t is smaller or equal to crN . . .
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Transition function

I the result of next t x L is a probability distribution with the
assignments:

prob (e, L,U,G ) = pLH ∗ (1− pA1) ∗ pS1
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Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Rewards

The idea is that:

I Being in a bad world yields less benefits (more damages) than
being in a good world.

I Low emissions yield less benefits (more costs, less growth)
than high emissions.

I Implementing low emissions when effective technologies are
unavailable costs more than implementing emissions when
these technologies are available.
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Rewards
Without loss of generality, we can take the benefits of being in a
good world for a step to be one and define

reward t x y (e,H,U,G ) = 1 + h
reward t x y (e,H,U,B) = b + h
reward t x y (e,H,A,G ) = 1 + h
reward t x y (e,H,A,B) = b + h
reward t x y (e, L,U,G ) = 1 + lu
reward t x y (e, L,U,B) = b + lu
reward t x y (e, L,A,G ) = 1 + la
reward t x y (e, L,A,B) = b + la

where h, b, lu, la : R fulfil b 6 1, 0 6 lu 6 la 6 h.

Notice that

I The minimal cost of implementing low emissions is h − la

I The step costs of being in a bad world are 1− b

I 1− b < h − la ⇒ reducing emissions is never a best choice!
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Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Completing the specification

I State, Ctrl , next and reward as discussed.

I M = Prob, Val = R, v= lift 6, ⊕ = +, meas is the expected
value.

I 9 decision steps, starting in (0,H,U,G ): zero cumulated
emissions, high emissions, unavailable efficient technologies
and world in a good state.

I crE = 4 and crN = 2 .

I b = 0.5, lu = 0.1, la = 0.2, h = 0.3.
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Logical results

I If the state of the world is bad, reducing emissions can never
be optimal: Après moi le déluge.

I Conversely, reducing emissions can only pay off if it allows
avoiding transitions to a bad world.

I At the last decision step it is always optimal to select high
emissions.

I crE = 4 ⇒ it takes at least 5 steps to achieve states in which
the sum of the cumulated emissions exceeds crE and, the
probability of a transition to a bad world increases from pS1
to pS2 .

I crN = 2 ⇒ it takes 3 steps to achieve states in which the
probability that effective technologies for reducing GHG
emissions become available increases from pA1 to pA2 .
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I Conversely, reducing emissions can only pay off if it allows
avoiding transitions to a bad world.

I At the last decision step it is always optimal to select high
emissions.

I crE = 4 ⇒ it takes at least 5 steps to achieve states in which
the sum of the cumulated emissions exceeds crE and, the
probability of a transition to a bad world increases from pS1
to pS2 .

I crN = 2 ⇒ it takes 3 steps to achieve states in which the
probability that effective technologies for reducing GHG
emissions become available increases from pA1 to pA2 .



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Logical results

I If the state of the world is bad, reducing emissions can never
be optimal: Après moi le déluge.
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Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Deterministic case, basic facts

I pS2 = pA1 = 0, pS1 = pA2 = pLL = pLH = pHL = pHH = 1.

I Effective technologies become available (with certainty) after
4 steps.

I The state of the world turns bad (with certainty) after 6 steps
at high emissions.

I For any given policy sequence there is exactly one possible
state-control trajectory.
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Deterministic case, policies

I Const High policies:

I trajectories, probabilities, rewards:
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 100%, 9.7

I Expected sum of rewards = 9.7.

I Const Low policies:

I trajectories, probabilities, rewards
[((0,H,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,U,G),L), ((0,L,A,G),L),

((0,L,A,G),L), ((0,L,A,G),L), ((0,L,A,G),L), ((0,L,A,G),L), ((0,L,A,G), )], 100%, 10.5

I Expected sum of rewards = 10.5

I Optimal policies:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),L),

((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),H), ((5,H,A,G) )], 100%, 11.3

I Expected sum of rewards = 11.3

I Optimal policies dictate postponing emission reductions until
effective technologies for reducing emissions become available!
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Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

More uncertainties

I What happens to optimal policies if we account for more
uncertainties in the decision problem?

I We want to estimate the impacts of:

I Uncertainty on the availability of efficient technologies:

I There is a small probability that technologies become available
before 4 steps and a small probability that technologies do not
become available available even after 4 steps!

I Uncertainty on the consequences of exceeding the critical
cumulated emission threshold crE :

I There is a small probability that the world turns bad before 6
high emission steps and a small probability that the world
doesn’t turns bad even after crE has been exceeded!
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Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the availability of technologies

I pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

I . . . pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

I 2n ∗ (n + 1) = 5120 possible trajectories for a policy sequence
for n = 9 steps!

I Optimal policies entail the same most likely trajectories. The
expected sum of rewards is almost the same!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the availability of technologies

I pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

I . . . pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

I 2n ∗ (n + 1) = 5120 possible trajectories for a policy sequence
for n = 9 steps!

I Optimal policies entail the same most likely trajectories. The
expected sum of rewards is almost the same!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the availability of technologies

I pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

I . . . pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

I 2n ∗ (n + 1) = 5120 possible trajectories for a policy sequence
for n = 9 steps!

I Optimal policies entail the same most likely trajectories. The
expected sum of rewards is almost the same!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the availability of technologies

I pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

I . . . pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

I 2n ∗ (n + 1) = 5120 possible trajectories for a policy sequence
for n = 9 steps!

I Optimal policies entail the same most likely trajectories. The
expected sum of rewards is almost the same!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the availability of technologies

I pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

I . . . pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

I 2n ∗ (n + 1) = 5120 possible trajectories for a policy sequence
for n = 9 steps!

I Optimal policies entail the same most likely trajectories. The
expected sum of rewards is almost the same!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE
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I . . . pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.

I 51200 possible trajectories for a 9-steps policy sequence!

I For Const High policies the most likely trajectory is
unchanged but . . .



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .

I . . . pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.

I 51200 possible trajectories for a 9-steps policy sequence!

I For Const High policies the most likely trajectory is
unchanged but . . .



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .

I . . . pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.

I 51200 possible trajectories for a 9-steps policy sequence!

I For Const High policies the most likely trajectory is
unchanged but . . .



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .

I . . . pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.

I 51200 possible trajectories for a 9-steps policy sequence!

I For Const High policies the most likely trajectory is
unchanged but . . .



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I pLL, pHH, pLH, pHL, pA1 and pA2 as before but . . .

I . . . pS1 = 0.9 and pS2 = 0.1 instead of 1 and 0.

I 51200 possible trajectories for a 9-steps policy sequence!

I For Const High policies the most likely trajectory is
unchanged but . . .



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I Optimal policies look now quite different:

I trajectories, probabilities, rewards
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((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.3%, 7.7

...

I Expected sum of rewards = 9.543

I Under uncertainty on the consequences of exceeding crE ,
precautionary policies become sub-optimal: optimal policies
dictate later emission reductions!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I Optimal policies look now quite different:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),)], 5.9%, 11.3

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.3%, 7.7

...

I Expected sum of rewards = 9.543

I Under uncertainty on the consequences of exceeding crE ,
precautionary policies become sub-optimal: optimal policies
dictate later emission reductions!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I Optimal policies look now quite different:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),)], 5.9%, 11.3

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.3%, 7.7

...

I Expected sum of rewards = 9.543

I Under uncertainty on the consequences of exceeding crE ,
precautionary policies become sub-optimal: optimal policies
dictate later emission reductions!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Uncertainty on the consequences of exceeding crE

I Optimal policies look now quite different:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),)], 5.9%, 11.3

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.3%, 7.7

...

I Expected sum of rewards = 9.543

I Under uncertainty on the consequences of exceeding crE ,
precautionary policies become sub-optimal: optimal policies
dictate later emission reductions!



Understanding the impacts of uncertainty on optimal policies → A stylized emission problem

Wrap-up

I Uncertainties about the implementability of decisions on
emission reductions (or increases) call for more precautionary
policies.

I In contrast, uncertainties about the implications of exceeding
critical cumulated emission thresholds tend to make
precautionary policies sub-optimal.

I The results are rigorous: optimality of “optimal” policies is
machine-checked.

I hope that my first slide is a little bit clearer now!
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Method (cont’d)



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction

I The challenge is implementing total functions

bi : (t : N) → (n : N) → PolicySeq t n

and

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

for arbitrary M, ⊕, v, State, Ctrl , next, reward and meas.

I As it turns out, if ⊕, v and meas fulfill minimal requirements,
the implementation directly follows from Bellman’s principle
of optimality.

Now we get to the meat of the theory!
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Bellman’s principle of optimality

I The key idea for understanding Bellman’s principle is the
notion of optimal extension of a policy sequence:

OptExt : PolicySeq (t + 1) m → Policy t → Type

OptExt ps p = (x : State t) → (p′ : Policy t) →
val x (p′ :: ps) v val x (p :: ps)

I With this notion, Bellman’s principle can be expressed as

Bellman : (ps : PolicySeq (t + 1) m) → OptPolicySeq ps →
(p : Policy t) → OptExt ps p →
OptPolicySeq (p :: ps)

I We can prove the principle (implement Bellman) if . . .
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Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Bellman’s principle of optimality (cont’d)

I ... v is reflexive and transitive.

I ⊕ is monotone w.r.t. v:

monotonePlusLTE : a v b → c v d → (a⊕ c) v (b ⊕ d)

I meas fulfills a monotonicity condition (Ionescu 2009):

measMon : {A : Type } →
(f : A → Val) → (g : A → Val) →
((a : A) → (f a) v (g a)) →
(ma : M A) →
meas (fmap f ma) v meas (fmap g ma)

Remember that M is a functor. Thus, it has a fmap : (A → B) → (M A → M B)!

Proof idea: val x (p′ :: ps′) v val x (p′ :: ps) v val x (p :: ps) and transitivity of v.
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Bellman’s principle of optimality (cont’d)

I ... v is reflexive and transitive.

I ⊕ is monotone w.r.t. v:

monotonePlusLTE : a v b → c v d → (a⊕ c) v (b ⊕ d)

I meas fulfills a monotonicity condition (Ionescu 2009):

measMon : {A : Type } →
(f : A → Val) → (g : A → Val) →
((a : A) → (f a) v (g a)) →
(ma : M A) →
meas (fmap f ma) v meas (fmap g ma)

Remember that M is a functor. Thus, it has a fmap : (A → B) → (M A → M B)!

Proof idea: val x (p′ :: ps′) v val x (p′ :: ps) v val x (p :: ps) and transitivity of v.



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Bellman’s principle of optimality (cont’d)

I ... v is reflexive and transitive.

I ⊕ is monotone w.r.t. v:

monotonePlusLTE : a v b → c v d → (a⊕ c) v (b ⊕ d)

I meas fulfills a monotonicity condition (Ionescu 2009):

measMon : {A : Type } →
(f : A → Val) → (g : A → Val) →
((a : A) → (f a) v (g a)) →
(ma : M A) →
meas (fmap f ma) v meas (fmap g ma)

Remember that M is a functor. Thus, it has a fmap : (A → B) → (M A → M B)!

Proof idea: val x (p′ :: ps′) v val x (p′ :: ps) v val x (p :: ps) and transitivity of v.



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Bellman’s principle of optimality (cont’d)

I ... v is reflexive and transitive.

I ⊕ is monotone w.r.t. v:

monotonePlusLTE : a v b → c v d → (a⊕ c) v (b ⊕ d)

I meas fulfills a monotonicity condition (Ionescu 2009):

measMon : {A : Type } →
(f : A → Val) → (g : A → Val) →
((a : A) → (f a) v (g a)) →
(ma : M A) →
meas (fmap f ma) v meas (fmap g ma)

Remember that M is a functor. Thus, it has a fmap : (A → B) → (M A → M B)!

Proof idea: val x (p′ :: ps′) v val x (p′ :: ps) v val x (p :: ps) and transitivity of v.



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Bellman’s principle of optimality (cont’d)

I ... v is reflexive and transitive.

I ⊕ is monotone w.r.t. v:

monotonePlusLTE : a v b → c v d → (a⊕ c) v (b ⊕ d)

I meas fulfills a monotonicity condition (Ionescu 2009):

measMon : {A : Type } →
(f : A → Val) → (g : A → Val) →
((a : A) → (f a) v (g a)) →
(ma : M A) →
meas (fmap f ma) v meas (fmap g ma)

Remember that M is a functor. Thus, it has a fmap : (A → B) → (M A → M B)!

Proof idea: val x (p′ :: ps′) v val x (p′ :: ps) v val x (p :: ps) and transitivity of v.



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then the implementation

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where
ps : PolicySeq (t + 1) n
ps = bi (t + 1) n

can be verified:

But it is very inefficient: the curse and blessing or recursion!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then the implementation

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where
ps : PolicySeq (t + 1) n
ps = bi (t + 1) n

can be verified:

But it is very inefficient: the curse and blessing or recursion!
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Generic, verified backwards induction (cont’d)

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then the implementation

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where
ps : PolicySeq (t + 1) n
ps = bi (t + 1) n

can be verified:

But it is very inefficient: the curse and blessing or recursion!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then the implementation

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where
ps : PolicySeq (t + 1) n
ps = bi (t + 1) n

can be verified:

But it is very inefficient: the curse and blessing or recursion!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then the implementation

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where
ps : PolicySeq (t + 1) n
ps = bi (t + 1) n

can be verified:

But it is very inefficient: the curse and blessing or recursion!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then the implementation

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where
ps : PolicySeq (t + 1) n
ps = bi (t + 1) n

can be verified:

But it is very inefficient: the curse and blessing or recursion!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)
I The task is to implement

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I n = 0: reflexivity of v.
I n = m + 1: induction on n

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t + 1) m
ps = bi (t + 1) m
ops : OptPolicySeq ps
ops = biLemma (t + 1) m
p : Policy t
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

The question is if and under which conditions we can compute optimal extensions of arbitrary policy sequences.

But this is for another talk!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)
I The task is to implement

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I n = 0: reflexivity of v.

I n = m + 1: induction on n

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t + 1) m
ps = bi (t + 1) m
ops : OptPolicySeq ps
ops = biLemma (t + 1) m
p : Policy t
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

The question is if and under which conditions we can compute optimal extensions of arbitrary policy sequences.

But this is for another talk!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)
I The task is to implement

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I n = 0: reflexivity of v.
I n = m + 1: induction on n

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t + 1) m
ps = bi (t + 1) m
ops : OptPolicySeq ps
ops = biLemma (t + 1) m
p : Policy t
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

The question is if and under which conditions we can compute optimal extensions of arbitrary policy sequences.

But this is for another talk!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)
I The task is to implement

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I n = 0: reflexivity of v.
I n = m + 1: induction on n

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t + 1) m
ps = bi (t + 1) m
ops : OptPolicySeq ps
ops = biLemma (t + 1) m
p : Policy t
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

The question is if and under which conditions we can compute optimal extensions of arbitrary policy sequences.

But this is for another talk!



Understanding the impacts of uncertainty on optimal policies → Method (cont’d)

Generic, verified backwards induction (cont’d)
I The task is to implement

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I n = 0: reflexivity of v.
I n = m + 1: induction on n

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t + 1) m
ps = bi (t + 1) m
ops : OptPolicySeq ps
ops = biLemma (t + 1) m
p : Policy t
p = optExt ps
oep : OptExt ps p
oep = optExtLemma ps

The question is if and under which conditions we can compute optimal extensions of arbitrary policy sequences.

But this is for another talk!



Understanding the impacts of uncertainty on optimal policies → The end

Thanks for your attention!
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