Specifications in small and large contexts —

Specifications in small and large contexts

Nicola Botta 21

2Potsdam Institute for Climate Impact Research

Thanks to C. lonescu, P. Jansson and to the Cartesian Seminar people.



Specifications in small and large contexts — Outline

Outline

v

Small context: vector indexing and lookup

v

Large context: dynamic programming

v

Specifications in large contexts

v

Preliminary conclusions, guidelines

» Dynamic programming continued



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» The challenge is implementing vector index and lookup:



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» The challenge is implementing vector index and lookup:

index : Finn — Vectn X — X



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» The challenge is implementing vector index and lookup:

index : Finn — Vectn X — X

lookup : (x : X) — (xs : Vect nX) — Elemx xs — Finn



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» The challenge is implementing vector index and lookup:

index : Finn — Vectn X — X

lookup : (x : X) — (xs : Vect nX) — Elemx xs — Finn

» The idea is that index shall be an “inverse” of lookup:



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» The challenge is implementing vector index and lookup:
index : Finn — Vectn X — X

lookup : (x : X) — (xs : Vect nX) — Elemx xs — Finn

» The idea is that index shall be an “inverse” of lookup:

ilSpec : (x : X) — (xs : Vect n X) — (p : Elem x xs) —
index (lookup x xs p) xs = x



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» The challenge is implementing vector index and lookup:

index : Finn — Vectn X — X

lookup : (x : X) — (xs : Vect nX) — Elemx xs — Finn

» The idea is that index shall be an “inverse” of lookup:
ilSpec : (x : X) — (xs : Vect n X) — (p : Elem x xs) —
index (lookup x xs p) xs = x

liSpec : (k : Finn) — (xs : Vectn X) —
(p : Injective2 xs) — (q : Elem (index k xs) xs) —
lookup (index k xs) xs g = k



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» All functions are required to be total.



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» All functions are required to be total.

» The context of the specification is Vect, Elem and Injective2.



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» All functions are required to be total.
» The context of the specification is Vect, Elem and Injective2.

> Injective2 xs means that xs has no duplicates:



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» All functions are required to be total.
» The context of the specification is Vect, Elem and Injective2.

> Injective2 xs means that xs has no duplicates:

Injective2 : Vect n X — Type
Injective2 xs = Not (i = j) — Not (index i xs = index j xs)



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» Could we simplify the specification, e.g., by declaring lookup
to return a list of Fin n?

lookup : (x : X) — (xs : Vect n X) — List (Fin n)



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» Could we simplify the specification, e.g., by declaring lookup
to return a list of Fin n?

lookup : (x : X) — (xs : Vect n X) — List (Fin n)

» Could we get rid of g in liSpec?

liSpec : (k : Finn) — (xs : Vect n X) —
(p : Injective2 xs) — (q : Elem (index k xs) xs) —
lookup (index k xs) xs q = k



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» Could we simplify the specification, e.g., by declaring lookup
to return a list of Fin n?

lookup : (x : X) — (xs : Vect n X) — List (Fin n)

» Could we get rid of g in liSpec?

liSpec : (k : Finn) — (xs : Vect n X) —
(p : Injective2 xs) — (q : Elem (index k xs) xs) —
lookup (index k xs) xs q = k

» When is a specification “enough”?



Specifications in small and large contexts — Small context: vector indexing and lookup

Small context: vector indexing and lookup

» Could we simplify the specification, e.g., by declaring lookup
to return a list of Fin n?

lookup : (x : X) — (xs : Vect n X) — List (Fin n)

» Could we get rid of g in liSpec?
liSpec : (k : Finn) — (xs : Vect n X) —
(p : Injective2 xs) — (q : Elem (index k xs) xs) —
lookup (index k xs) xs q = k

» When is a specification “enough”?

» Can we put forward guidelines for specifications?



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» The challenge is implementing total functions

bi :(t: N) — (n:N) — PolicySeq t n



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» The challenge is implementing total functions
bi :(t: N) — (n:N) — PolicySeq t n
and

bilLemma : (t : N) — (n : N) — OptPolicySeq (bi t n)



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» The challenge is implementing total functions
bi :(t: N) — (n:N) — PolicySeq t n
and

bilLemma : (t : N) — (n : N) — OptPolicySeq (bi t n)

» The idea is that bi shall be a generic implementation of
dynamic programming (Bellman 1957).



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» The challenge is implementing total functions
bi :(t: N) — (n:N) — PolicySeq t n
and
bilLemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
» The idea is that bi shall be a generic implementation of
dynamic programming (Bellman 1957).

» It shall return a sequence of policies for n decision steps
starting from decision step t for arbitrary n and t.



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

v

The challenge is implementing total functions

bi :(t: N) - (n:N) — PolicySeq t n
and

bilLemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
The idea is that bi shall be a generic implementation of
dynamic programming (Bellman 1957).

It shall return a sequence of policies for n decision steps
starting from decision step t for arbitrary n and t.

biLemma states that bi t n shall be an optimal policy
sequence.



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» We can get an intuition of the specification by looking at
PolicySeq and OptPolicySeq:



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» We can get an intuition of the specification by looking at
PolicySeq and OptPolicySeq:
data PolicySeq : (t : N) — (n : N) — Type where
Nil : PolicySeq t Z
(::) : Policy t — PolicySeq (t +1) n — PolicySeq t (n+1)



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» We can get an intuition of the specification by looking at
PolicySeq and OptPolicySeq:
data PolicySeq : (t : N) — (n : N) — Type where
Nil : PolicySeq t Z
(::) : Policy t — PolicySeq (t +1) n — PolicySeq t (n+1)

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : Statet) —
val x ps’' C val x ps



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» We can get an intuition of the specification by looking at
PolicySeq and OptPolicySeq:

data PolicySeq : (t : N) — (n : N) — Type where
Nil : PolicySeq t Z
(::) : Policy t — PolicySeq (t +1) n — PolicySeq t (n+1)

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : Statet) —
val x ps’' C val x ps

» This brings into the context Policy, State, val, C.



Specifications in small and large contexts — Large context: dynamic programming

Large context: dynamic programming

» We can get an intuition of the specification by looking at
PolicySeq and OptPolicySeq:
data PolicySeq : (t : N) — (n : N) — Type where
Nil : PolicySeq t Z
(::) : Policy t — PolicySeq (t +1) n — PolicySeq t (n+1)

OptPolicySeq : PolicySeq t n — Type
OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : Statet) —

val x ps’' C val x ps
» This brings into the context Policy, State, val, C.

» Giving the full context of bi, biLemma means formalizing the
theory of dynamic programming.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.

» The set of states observable at a given decision step can
depend on that step.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.

» The set of states observable at a given decision step can
depend on that step.

» The set of controls available to the decision maker in a given
state can depend on that state.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.

» The set of states observable at a given decision step can
depend on that step.

» The set of controls available to the decision maker in a given
state can depend on that state.

» Selecting a control in a state entails a set of possible next
states.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.

» The set of states observable at a given decision step can
depend on that step.

» The set of controls available to the decision maker in a given
state can depend on that state.

» Selecting a control in a state entails a set of possible next
states.

» A triple (current state, current control, next state) entails a
reward.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.

» The set of states observable at a given decision step can
depend on that step.

» The set of controls available to the decision maker in a given
state can depend on that state.

» Selecting a control in a state entails a set of possible next
states.

» A triple (current state, current control, next state) entails a
reward.

» The decision maker aims at maximising a sum of possible
rewards over a fixed number of decision steps.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: an informal write up

» DP is a method for solving sequential decision problems.

» SDPs are decision problems in which a decision maker picks
up a sequence of controls.

» At each decision step, the decision maker observes a state and
picks up a control.

» The set of states observable at a given decision step can
depend on that step.

» The set of controls available to the decision maker in a given
state can depend on that state.

» Selecting a control in a state entails a set of possible next
states.

» A triple (current state, current control, next state) entails a
reward.

» The decision maker aims at maximising a sum of possible
rewards over a fixed number of decision steps.



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

> A SDP can be specified in terms of four functions:



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

> A SDP can be specified in terms of four functions:

State : (t : N) — Type



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

> A SDP can be specified in terms of four functions:

State : (t : N) — Type

Ctrl : (t : N) — (x : Statet) — Type



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

> A SDP can be specified in terms of four functions:

State : (t : N) — Type

Ctrl : (t : N) — (x : Statet) — Type

next : (t : N) — (x : Statet) — (y : Ctrltx) —
M (State (t + 1))



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» M is a functor representing the problem’s uncertainties:



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» M is a functor representing the problem’s uncertainties:

» M : Type — Type



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» M is a functor representing the problem’s uncertainties:
» M : Type — Type

» M = Id (deterministic uncertainty)



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» M is a functor representing the problem’s uncertainties:

» M : Type — Type
» M = Id (deterministic uncertainty)

» M = List (non-deterministic uncertainty)



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» M is a functor representing the problem’s uncertainties:
» M : Type — Type
» M = Id (deterministic uncertainty)

» M = List (non-deterministic uncertainty)

v

M = Prob (stochastic uncertainty)

» In many problems M = Prob or M = List (Monadic
dynamical systems, lonescu 2009).



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» The fourth function defines the problem’s rewards



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» The fourth function defines the problem’s rewards

reward : (t : N) — (x : Statet) — (y : Ctrlt x) —
(x" : State (t+1)) — Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» The fourth function defines the problem’s rewards

reward : (t : N) — (x : Statet) — (y : Ctrlt x) —
(x" : State (t+1)) — Val

» Thus map (reward t x y) (next t x y) : M Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: SDPs

» The fourth function defines the problem’s rewards

reward : (t : N) — (x : Statet) — (y : Ctrlt x) —
(x" : State (t+1)) — Val

» Thus map (reward t x y) (next t x y) : M Val

» In many problems Val = R and sums are discounted sums of
real numbers!



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: policies

» Policies are functions from states to controls



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: policies

» Policies are functions from states to controls

Policy : (t : N) — Type
Policy t = (x : Statet) — Ctrl t x



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: policies

» Policies are functions from states to controls

Policy : (t : N) — Type
Policy t = (x : Statet) — Ctrl t x

» Policy sequences are sequences of policies:



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: policies

» Policies are functions from states to controls

Policy : (t : N) — Type
Policy t = (x : Statet) — Ctrl t x

» Policy sequences are sequences of policies:
data PolicySeq : (t : N) — (n : N) — Type where

Nil : PolicySeq t Z
(:1) : Policy t — PolicySeq (t+1) n — PolicySeq t (n+ 1)



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» The notion of optimality for policy sequences depends on how
the decision maker compares rewards



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them
® : Val — Val — Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them
® : Val — Val — Val

> ... on a default “zero” value of type Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them
® : Val — Val — Val

> ... on a default “zero” value of type Val
zero : Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

v

The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them
® : Val — Val — Val

> ... on a default “zero” value of type Val
zero : Val
» and on how it measures uncertain outcomes



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

v

The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them
® : Val — Val — Val

> ... on a default “zero” value of type Val
zero : Val
» and on how it measures uncertain outcomes

meas : M Val — Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

v

The notion of optimality for policy sequences depends on how
the decision maker compares rewards

C : Val - Val — Type

> ... on how it adds them
® : Val — Val — Val

> ... on a default “zero” value of type Val
zero : Val
» and on how it measures uncertain outcomes

meas : M Val — Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality
» With C, @& and meas, one can compute the value of taking n
decisions starting from some initial state and according to a

policy sequence ps:

val : (x : Statet) — PolicySeqtn — Val



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» With C, @& and meas, one can compute the value of taking n
decisions starting from some initial state and according to a
policy sequence ps:

val : (x : Statet) — PolicySeqtn — Val

val {t} {n=Z} x Nil = zero



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» With C, @& and meas, one can compute the value of taking n
decisions starting from some initial state and according to a
policy sequence ps:

val : (x : Statet) — PolicySeqtn — Val
val {t} {n= 2} x Nil = zero

val {t} {n=m+1} x (p:: ps) = meas (fmap f mx’') where
y o Ctrl tx
y =px
mx" : M (State (t + 1))
mx' = nexttxy
f . State (t+1) — Val
fx' =reward t x y x' ® val x' ps



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» ... formalize the notion of optimality for policy sequences



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : State t) —
val x ps' C val x ps



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : State t) —
val x ps' C val x ps

» ... and derive



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : State t) —
val x ps' C val x ps

» ... and derive

bi :(t:N) — (n:N) — PolicySeq t n

biLemma : (t : N) — (n : N) — OptPolicySeq (bi t n)



Specifications in small and large contexts — Large context: dynamic programming

Dynamic programming: optimality

» ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : State t) —
val x ps' C val x ps

» ... and derive

bi :(t:N) — (n:N) — PolicySeq t n
bilemma : (t : N) — (n : N) — OptPolicySeq (bi t n)

» from Bellman'’s principle of optimality.



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» State, Ctrl, M, Policy, C have been introduced as functions
that return values of type Type.



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» State, Ctrl, M, Policy, C have been introduced as functions
that return values of type Type.

» Perhaps it would have been better to use data declarations
instead?



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» State, Ctrl, M, Policy, C have been introduced as functions
that return values of type Type.

» Perhaps it would have been better to use data declarations
instead? When do we use functions? When data declarations?



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» State, Ctrl, M, Policy, C have been introduced as functions
that return values of type Type.

» Perhaps it would have been better to use data declarations
instead? When do we use functions? When data declarations?

» We need more than just State, Ctrl, M, next, reward, C, &
and meas to specify the context of a DP problem.



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» State, Ctrl, M, Policy, C have been introduced as functions
that return values of type Type.

» Perhaps it would have been better to use data declarations
instead? When do we use functions? When data declarations?

» We need more than just State, Ctrl, M, next, reward, C, &
and meas to specify the context of a DP problem.

» For instance, we need to require M to be a container monad,
C to be a total preorder, & to be monotone with respect to C



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» Type classes are useful to inject a context in the scope of a
functions but ...



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» Type classes are useful to inject a context in the scope of a
functions but ...

» How to stipulate Monad M for a module?



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» Type classes are useful to inject a context in the scope of a
functions but ...

» How to stipulate Monad M for a module?

» We have not been able to use type classes effectively to
structure the context of bi, biLemma!



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» Type classes are useful to inject a context in the scope of a
functions but ...

» How to stipulate Monad M for a module?

» We have not been able to use type classes effectively to
structure the context of bi, biLemma!

» We need to formalize properties of context elements whose
implementation is deferred to applications, for instance

finiteAllViable : FiniteAll — FiniteViable — FiniteAllViable



Specifications in small and large contexts — Specifications in large contexts

Specifications in large contexts

» Type classes are useful to inject a context in the scope of a
functions but ...

» How to stipulate Monad M for a module?

» We have not been able to use type classes effectively to
structure the context of bi, biLemma!

» We need to formalize properties of context elements whose
implementation is deferred to applications, for instance

finiteAllViable : FiniteAll — FiniteViable — FiniteAllViable

» This has turned out to be problematic due to current
language limitations: explicit filling in of scoped (not top
level) implicits is not yet implemented.



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» In DP we can implement a generic verified bi without relying
on unimplementable postulates.



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» In DP we can implement a generic verified bi without relying
on unimplementable postulates.

» In formalizations of probability theory, numerical analysis,
machine learning, unimplementable postulated are
unavoidable.



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» In DP we can implement a generic verified bi without relying
on unimplementable postulates.

» In formalizations of probability theory, numerical analysis,
machine learning, unimplementable postulated are
unavoidable.

» This leads to notions of correctness that are conditional and
incremental: one can type check a program to be correct but
one cannot compute a correctness proof.



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» Conditional, incrementally correct implemetations require
separating programs from specifications:



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» Conditional, incrementally correct implemetations require
separating programs from specifications:

index : Finn = VectnX — X
indexSpec : (k : Finn) — (xs : Vect n X) —
Elem (index k xs) xs



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» Conditional, incrementally correct implemetations require
separating programs from specifications:

index : Finn = VectnX — X
indexSpec : (k : Finn) — (xs : Vect n X) —
Elem (index k xs) xs

not

index : (k : Finn) — (xs : Vect n X) —
Y X (Ax = Elem x xs)



Specifications in small and large contexts — Preliminary conclusions, guidelines

Preliminary conclusions, guidelines

» Conditional, incrementally correct implemetations require
separating programs from specifications:

index : Finn = VectnX — X
indexSpec : (k : Finn) — (xs : Vect n X) —
Elem (index k xs) xs

not

index : (k : Finn) — (xs : Vect n X) —
Y X (Ax = Elem x xs)

» For a program or data type, one would like a minimal set of
specifications that allows the proving useful results about that
program independently of its implementation.



Specifications in small and large contexts — Preliminary conclusions, guidelines

| 3l Small context: vector indexing and lookup

|l Large context: dynamic programming

| Ml Specifications in large contexts

| M Preliminary conclusions

| M Dynamic programming continued



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: Bellman's principle of optimality

» Bellman’s principle rests on the notion of optimal extension of
a policy sequence:



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: Bellman's principle of optimality

» Bellman’s principle rests on the notion of optimal extension of
a policy sequence:

OptExt . PolicySeq (t+1) m — Policy t — Type
OptExt ps p = (x : Statet) — (p’ : Policy t) —
val x (p’ :: ps) C val x (p:: ps)



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: Bellman's principle of optimality

» Bellman’s principle rests on the notion of optimal extension of
a policy sequence:

OptExt . PolicySeq (t +1) m — Policy t — Type
OptExt ps p = (x : Statet) — (p’ : Policy t) —
val x (p’ :: ps) C val x (p:: ps)

» With this notion, Bellman’s principle can be formulated as

Bellman : (ps : PolicySeq (t +1) m) — OptPolicySeq ps —
(p : Policyt) — OptExt psp —
OptPolicySeq (p :: ps)



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: Bellman's principle of optimality

» Bellman’s principle rests on the notion of optimal extension of
a policy sequence:

OptExt . PolicySeq (t +1) m — Policy t — Type
OptExt ps p = (x : Statet) — (p’ : Policy t) —
val x (p’ :: ps) C val x (p:: ps)

» With this notion, Bellman's principle can be formulated as

Bellman : (ps : PolicySeq (t +1) m) — OptPolicySeq ps —
(p : Policyt) — OptExt psp —
OptPolicySeq (p :: ps)

» We can implement Bellman if ...



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: minimal requirements

» ... C is reflexive and transitive.



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: minimal requirements

» ... C is reflexive and transitive.

» @D is monotone w.r.t. C:

monotonePlusLTE : aC b — cCd — (a®c)C (b d)



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: minimal requirements

» ... C is reflexive and transitive.

» @ is monotone w.r.t. C:

monotonePlusLTE : aC b — cCd — (a®c)C (b d)

» meas fulfills a monotonicity condition (lonescu 2009):

measMon : {A : Type} —
(fF:A—= Val) - (g : A — Val) —
((a:A) = (fa)C(ga) =
(ma: MA) —
meas (fmap f ma) C meas (fmap g ma)



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: minimal requirements

» ... C is reflexive and transitive.

» @ is monotone w.r.t. C:

monotonePlusLTE : aC b — cCd — (a®@c)C(badd)

» meas fulfills a monotonicity condition (lonescu 2009):

measMon : {A : Type} —
(fF:A—= Val) - (g : A — Val) —
((a:A) = (fa)C(ga) =
(ma: MA) —
meas (fmap f ma) C meas (fmap g ma)



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: bi



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: bi

» How can we take advantage of Bellman’s principle?



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: bi

» How can we take advantage of Bellman’s principle?

» Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) —
OptExt ps (optExt ps)



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: bi

» How can we take advantage of Bellman’s principle?

» Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) —
OptExt ps (optExt ps)

» Then

bitZ = Nil
bi t (n+ 1) = optExt ps :: ps where ps = bi (t +1) n

is correct.



Specifications in small and large contexts — Dynamic programming continued
Dynamic programming: bi is correct

» The task is to implement
bilemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
for

bitZ = Nil
bi t (m+ 1) = optExt ps :: ps where ps = bi (t +1) m



Specifications in small and large contexts — Dynamic programming continued
Dynamic programming: bi is correct

» The task is to implement
bilemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
for
bitZ = Nil
bi t (m+ 1) = optExt ps :: ps where ps = bi (t +1) m

» Case n = 0: reflexivity of C.



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: bi is correct

» The task is to implement
bilemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
for
bitZ = Nil
bi t (m+ 1) = optExt ps :: ps where ps = bi (t +1) m

» Case n = 0: reflexivity of C.
» Case n = m+ 1: induction on biLemma:

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t+1)m; ps =bi(t+1)m
ops : OptPolicySeq ps; ops = biLemma (t +1) m
p : Policy t; p = optExt ps
oep : OptExt ps p; oep = optExtLemma ps



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: optimal extensions

» Under which conditions can one compute optimal extensions

optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t +1) n) —
OptExt ps (optExt ps)

of arbitrary policy sequences?



Specifications in small and large contexts — Dynamic programming continued

Dynamic programming: optimal extensions

» Under which conditions can one compute optimal extensions

optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t +1) n) —
OptExt ps (optExt ps)

of arbitrary policy sequences?

» This is for another talk but ...



	Outline
	Small context: vector indexing and lookup
	Large context: dynamic programming
	Specifications in large contexts
	Preliminary conclusions, guidelines
	Dynamic programming continued

