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PEEFACE

THE substance of the following pages was given as a series of five

lectures to the Graduate Conference in Physics of Harvard Univer-

sity in the spring of 1920.

The growing use of the methods of dimensional analysis in tech-

nical physics, as well as the importance of the method in theoretical

investigations, makes it desirable that every physicist should have

this method of analysis at his command. There is, however, nowhere

a systematic exposition of the principles of the method. Perhaps the

reason for this lack is the feeling that the subject is so simple that

any formal presentation is superfluous. There do, nevertheless, exist

important misconceptions as to the fundamental character of the

method and the details of its use. These misconceptions are so wide-

spread, and have so profoundly influenced the character of many
speculations, as I shall try to show by many illustrative examples,

that I have thought an attempt to remove the misconceptions well

worth the effort.

I have, therefore, attempted a systematic exposition of the princi-

ples underlying the method of dimensional analysis, and have illus-

trated the applications with many examples especially chosen to

emphasize the points concerning which there is the most common

misunderstanding, such as the nature of a dimensional formula,
the proper number of fundamental units, and the nature of dimen-

sional constants. In addition to the examples in the text, I have

included at the end a number of practise problems, which I hope
will be found instructive.

The introductory chapter is addressed to those who already have

some acquaintance with the general method. Probably most readers

will be of this class. I have tried to show in this chapter by actual

examples what are the most important questions in need of discus-

sion. The reader to whom the subject is entirely new may omit this

chapter without trouble.

I am under especial obligation to the papers of Dr. Edgar Buck-

ingham on this subject. I am also much indebted to Mr. M. D. Hersey
of the Bureau of Standards, who a number of years ago presented
Dr. Buckingham's results to the Conference in a series of lectures.

September, 1920.
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CHAPTER I

INTRODUCTORY

APPLICATIONS of the methods of dimensional analysis, to simple

problems, particularly in mechanics, are made by every student of

physics. Let us analyze a few such problems in order to refresh our

minds and get before us some of the questions which must be

answered in a critical examination of the processes and assumptions

underlying the correct application of the general method.

"We consider first the illustrative problem used in nearly every

introduction to this subject, that of the simple pendulum. Our

endeavor is to find, without going through a detailed solution of the

problem, certain relations which must be satisfied by the various

measurable quantities in which we are interested. The usual proce-

dure is as follows. We first make a list of all the quantities on which

the answer may be supposed to depend; we then write down the

dimensions of these quantities, and then we demand that these quan-

tities be combined into a functional relation in such a way that the

relation remains true no matter what the size of the units in terms

of which the quantities are measured.

Now let us try by this method to find how the time of swing of the

simple pendulum depends on the variables which determine the

behavior. The time of swing may conceivably depend on the length

of the pendulum, on its mass, on the acceleration of gravity, and on

the amplitude of swing. Let us write down the dimensions of these

various quantities, using for our fundamental system of units mass,

length, and time. In the dimensional formulas the symbols of mass,

length, and time will be denoted by capital letters, raised to proper

powers. Our list of quantities is as follows :

Name of Quantity. Symbol. Dimensional Formula.

Time of swing, t T

Length of pendulum, 1 L
Mass of pendulum, m M
Acceleration of gravity, g LT~2

Angular amplitude of swing, 6 No dimensions.
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1 We are' to
1

find t as a function of 1, m, g, and 0, such that the

functional relation still holds when the size of the fundamental

units is changed in any way whatever. Suppose that we have foupd

this relation and write

Now the dimensional formulas show how the various fundamental

units determine the numerical magnitude of the variables. The

numerical magnitude of the time of swing depends only on the size

of the unit of time, and is not changed when the units of mass or

length are changed. Hence if the equation is to remain true when

the units of mass and length are changed in any way whatever, the

quantities inside the functional sign on the right-hand side of the

equation must be combined in such a way that together they are also

unchanged when the units of mass and length are changed. In par-

ticular, they must be unchanged when the size of the unit of mass

alone is changed. Now the size of the unit of mass affects only the

magnitude of the quantity m. Hence if m enters the argument of

the function at all, the numerical value of the function will be

changed when the size of the fundamental unit of mass is changed,

and this change cannot be compensated by any corresponding

change in the values of the other quantities, for these are not

affected by changes in the size of the unit of mass. Hence the mass

cannot enter the functional relation at all. This shows that the

relation reduces to

Now 1 and g must together enter the function in such a way that

the numerical magnitude of the argument is unchanged when the

size of the unit of length is changed and the unit of time is kept

constant. That is, the change in the numerical value of 1 produced

by a change in the size of the unit of length must be exactly com-

pensated by the change produced in g by the same change. The

dimensional formula shows that 1 must be divided by g for this to

be accomplished. We now have

Now a change in the size of the fundamental units produces no

change in the numerical magnitude of the angular amplitude, be-

cause it is dimensionless, and hence may enter the unknown func-

tion in any way. But it is evident that 1/g must enter the function in
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such a way that the combination has the dimensions of T, since

these are the dimensions of t which stands alone on the left-hand

side of the equation. We see by inspection that 1/g must enter as

the square root in order to have the dimensions of T, and the final

result is to be written

where
</>

is subject to no restriction as far as the present analysis

can go. As a matter of fact, we know from elementary mechanics,

that < is very nearly a constant independent of 0, and is approxi-

mately equal to 2?r.

A question may arise in connection with the dimensions of 0. We
have said that it is dimensionless, and that its numerical magnitude
does not change when the size of the fundamental units of mass,

length, or time are changed. This of course is true, but it does not

follow that therefore the numerical magnitude of is uniquely

determined, as we see at once from the possibility of measuring in

degrees or in radians. Are we therefore justified in treating as a

constant and saying that it may enter the functional relation in any

way whatever?

Now let us discuss by the same method of analysis the time of

small oscillation of a small drop of liquid under its own surface

tension. The drop is to be thought of as entirely outside the gravita-

tional field, and the oscillations refer to periodic changes of figure,

as from spherical to ellipsoidal and back. The time of oscillation

will evidently depend on the surface tension of the liquid, on the

density of the liquid, and on the radius of the undisturbed sphere.

We have, as before,

Name of Quantity. Symbol. Dimensional Formula.

Time of oscillation, t T
Surface tension, s MT~2

Density of liquid, d MLr3

Radius of drop, r L

We are to find f such that

t = f (s, d, r)

where f is such that this relation holds true numerically whatever

the size of the fundamental units in terms of which t, s, d, and r are
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measured. The method is exactly the same as for the pendulum
problem. It is obvious that M must cancel from the right-hand side

of the equation. This can occur only if s and d enter through their

quotient. Hence

t = f (s/d,r).

Now since L does not enter t, L cannot enter f . Hence s/d and r

must be combined in such a way that L cancels. Since L enters s/d
to the third power, it is obvious that s/d must be divided by the cube

of r in order to get rid of L. Hence

t f (s/dr
3
).

Now the dimensions of s/dr
3 are T~2

. The function must be of

such a form that these dimensions are converted into T, which are

the dimensions of the left-hand side. Hence the final result is

t = Const V dr8
/s.

That is, the time of oscillation is proportional to the three halves

power of the radius, to the square root of the density, and inversely

to the square root of the surface tension. This result is checked by

experiment. The result was given by Lord Rayleigh as problem 7

in his paper in Nature, 95, 66, 1915.

Now let us stop to ask what we meant when in the beginning we

said that the time of oscillation will ''depend" only on the surface

tension, density, and radius. Did we mean that the results are inde-

pendent of the atomic structure of the liquid, for example ? Every-

one will admit that surface tension is due to the forces between the

atoms in the surface layer of the liquid, and will depend in a way
too complicated for us at present to exactly express on the shape

and constitution of the atoms, and on the nature of the forces be-

tween them. If this is true, why should not all the elements which

determine the forces between the atoms also enter our analysis, for

they are certainly effective in determining the physical behavior?

"We might justify our procedure by some such answer as this.
' '

Al-

though it is true that the behavior is determined by a most com-

plicated system of atomic forces, it will be found that these forces

affect the result only in so far as they conspire to determine one

property, the surface tension." This implies that if we were to

measure the time of oscillation of drops of different liquids, differing
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as much as we pleased in atomic properties, we would find that all

drops of the same radius, density, and surface tension, executed

their oscillations in the same time. We add that the truth of this

reply may be checked by an appeal to experiment. But our critic

may not even yet be satisfied. He may ask how we were sure before-

hand that among the various properties of the liquids of which the

drop might be composed the surface tension was the only property

.affecting the time of oscillation. It may seem quite conceivable to

him that the time of oscillation might depend on the viscosity or

compressibility, and if we are compelled to appeal to experiment,

of what value is our dimensional analysis? To which we would be

forced to reply that we have indeed had a wider experimental

experience than our critic, and that there are conditions under

which the time of oscillation does depend on the viscosity or com-

pressibility in addition to the surface tension, but that it will be

found as a matter of experiment that if the radius of the drop is

made smaller and smaller there is a point beyond which the com-

pressibility will be found to play an imperceptibly small part, and

in the same way if the viscosity of the liquid is made smaller and

smaller, there will also be a point beyond which any further reduc-

tion of the viscosity will not perceptibly affect the oscillation time.

And we add that it is to such conditions as these that our analysis

applies. Instead of appealing to direct experiment to justify our

assertions, we might, since our critic is an intelligent critic, appeal

to that generalization from much experiment contained in the equa-

tions of hydrodynamics, and show by a detailed application of the

equations to the present problem that compressibility and viscosity

may be neglected beyond certain limiting conditions.

We shall thus ultimately be able to satisfy our critic of the cor-

rectness of our procedure, but to do it requires a considerable back-

ground of physical experience, and the exercise of a discreet judg-

ment. The untutored savage in the bushes would probably not be

able to apply the methods of dimensional analysis to this problem
and obtain results which would satisfy us.

Now let us consider a third problem. Given two bodies of masses

m
x and m2 in empty space, revolving about each other in a spherical

orbit under their mutual gravitational attraction. We wish to find

how the time of revolution depends on the other variables. We make
a list of the various quantities as before.
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Name of Quantity. Symbol. Dimensional Formula.

Mass of first body, n^ M
Mass of second body, m2 M
Distance of separation, r L
Time of revolution, t T

These are evidently all the quantities physically involved, because

whenever we compel two bodies of masses 1% and m 2 to describe a

circular orbit about each other under their own gravitational attrac-

tion in empty space at a distance of separation r, we find that the

time of revolution is always the same, no matter what the material

of which the bodies are composed, or their past history, chemical,

dynamical, or otherwise. Now let us search for the functional rela-

tion, writing,

t=f (m^m^r).

We demand that this shall hold irrespective of the size of the funda-

mental units. A moment's examination confuses us, because the

left-hand side involves only the element of time, and the elements

of the right-hand side do not involve the time at all. Our critic at

our elbow now suggests,
' ' But you have not included all the elements

on which the result depends; it is obvious that you have left out

the gravitational constant." "But," say we, "how can this be?

The gravitational constant can look out for itself. Nature attends

to that for us. It is undeniable that two bodies of the masses mx and

m2 when placed at a distance r apart always revolve in the same

time. We have included all the physical quantities which can be

varied." But our critic insists, and to oblige him we try the effect

of including the gravitational constant among the variables. We call

the gravitational constant G; it obviously has the dimensions

M"1 L3 T~2
,
since it is defined by the equation of the force between

m1 m2

two gravitating bodies, force = G . A "constant" which has

dimensions and therefore changes in numerical magnitude when
the size of the fundamental units changes is called a

' '

dimensional ' '

constant. We now have to find a function such that the following

relation is satisfied :

t = f (mlt m2 , G,r).

Now this functional equation is not quite so easy to solve by inspec-

tion as the two previous ones, and we shall have to use a little
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algebra on it. Let us suppose that the function is expressed in the

form of a sum of products of the arguments. Then we know that if

the two sides of the equation are to remain equal no matter how the

fundamental units are changed in magnitude, the dimensions of

every one of the product terms on the right-hand side must be the

same as those of the left-hand side, that is, the dimensions must be

T. Assume that a typical product term is of the form

m mf GV r*.

This must have the dimensions of T. That is,

MM0 (M-
1 L 3 T- 3

)vL
5 = T.

"Writing down the conditions on the exponents gives

a + /3-y =
3y + 8 =
-2y = l

Hence

The values of a and ft are not uniquely determined, but only a

relation between them is fixed. This is as we should expect, because

we had only three equations of condition, and four unknown quan-
tities to satisfy them with. The relation between a and ft shows that

m and m2 must enter in the form mT*[ ??i
J ,

where there is no
\ m i/

restriction on the value of x. Hence our unknown function is of the

form

f = 2 A,
G^mM~

where x and Ax may have any arbitrary values. We may rewrite f,

by factoring, in the form

~\m

But now 2 AX (
-

) ,
if there is no restriction on x or Ax,

is
(

-
1 ,

if

\w
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merely an arbitrary function of m /m ,
which we write as <

[
?

J.

\m i/

Hence our final result is

L *
^

, C

That is, the square of the periodic time is proportional to the

cube of the distance of separation, and inversely as the gravita-

tional constant, other things being equal.

"We can, by other argument, find what the nature of the unknown
function

</>
is in one special case. Suppose a very heavy central body,

and a satellite so light that the two together revolve approximately
about the center of the heavy body. It is obvious that under these

conditions the time of revolution is independent of the mass of the

satellite, for if its mass is doubled, the attractive force is also

doubled, and double the force acting on double the mass leaves the

acceleration, and so the time of revolution, unaltered. Therefore

under these special conditions the unknown function reduces to a

constant, if we denote by n^ the mass of the satellite, and the rela-

tion becomes

t = Const
r

.

G*m<

This relation we know is verified by the facts of astronomy.

Our critic seems, therefore, to have been justified by the results,

and we should have included the gravitational constant in the

original list. We are nevertheless left with an uncomfortable feeling

because we do not see quite what was the matter with our argument,

and we are disturbed by the foreboding that at some time in the

future there may perhaps be a dimensional constant which we are

not clever enough to think of, and which may not proclaim the

impossibility of neglecting it in quite such uncompromising tones

as the gravitational constant in the example. "We are afraid that in

such a case we will get the incorrect answer, and not know it until

a Quebec bridge falls down.

Beside the matter of dimensional constants the last problem brings

up another question. "Why is it that we had to assume that the un-

known function could be represented as a sum of products of powers
of the independent variables? Certainly there 'are functions in

mathematics which cannot be represented in this way. Is nature to



INTRODUCTORY 9

be arbitrarily restricted to a small part of the functions which one

of her own creatures is able to conceive ?

Consider now a fourth problem, treated by Lord Rayleigh in

Nature, vol. 15, 66, 1915. This is a rather famous problem in heat

transfer, treated before Rayleigh by Boussinesq. A solid body, of

definite geometrical shape, but variable absolute dimensions, is

fixed in a stream of liquid, and maintained at a definite tempera-

ture higher than the temperature of the liquid at points remote from

the body. It is required to find the rate at which heat is transferred

from the body to the liquid. As before, we make a list of the various

quantities involved, and their dimensions.

Name of Quantity. Symbol. Dimensional Formula.

Rate of heat transfer, h HT-1

Linear dimension of body, a L
Velocity of stream, v LT"1

Temperature difference,

Heat capacity of liquid per
unit volume, c HL~3 Or1

Thermal conductivity of liquid, k HL-1 T-1 0-1

This is the first heat problem which we have met, and we have

introduced two new fundamental units, a quantity of heat (H),

and a unit of temperature (0). It is to be noticed that the unit of

mass does not enter into the dimensional formulas of any of the

quantities in this problem. If we desired, we might have introduced

it, dispensing with H in so doing. Now, just as in the last example,

we suppose that the rate of heat transfer, which is the quantity in

which we are interested, is expressed as a sum of products of powers
of the arguments, and we write one of the typical terms

Const aa 00 w cs k*.

As before, we write down the conditions on the exponents imposed

by the requirement that the dimensions of this product are the same

as those of h. We shall thus obtain four equations, because there

are four fundamental kinds of unit. The equations are

8 + c = 1 condition on exponent of H
p S e = condition on exponent of

a _|_y_3S_ o condition on exponent of L

y c = 1 condition on exponent of T

We have five unknown quantities and only four equations, so one
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of the unknowns must remain arbitrary. Choose this one to be y, and

solve the equations in terms of y. This gives

=1-7
Hence the product term above becomes

Const a 0k
\ k /

The complete solution is the sum of terms of this type. As before,

there is no restriction on the constant or on y, so that all these terms

together coalesce into a single arbitrary function, giving the result

Hence the rate of heat transfer is proportional to the temperature

difference, but depends on the other quantities in a way not com-

pletely specifiable. Although the form of the function F is not

known, nevertheless the form of the argument of the function con-

tains very valuable information. For instance, we are informed

that the effect of changing the velocity of the fluid is exactly the

same as that of changing its heat capacity. If we double the velocity,

keeping the other variables fixed, we affect the rate of heat transfer

precisely as we would if we doubled the heat capacity of the liquid,

keeping the other variables constant.

This problem, again, is capable of raising many questions. One

of these questions has been raised by D. Riabouchinsky in Nature,

95, 591, 1915. We quote as follows:

In Nature of March 18 Lord Rayleigh gives this formula,

(Q

rt T^X

), considering heat, temperature, length, and time

as four
"
independent

' '

quantities.
If we suppose only three of these quantities are "really inde-

pendent,
' ' we obtain a different result. For example, if the tempera-

ture is defined as the mean kinetic energy of the molecules, the

principle of similitude* allows us only to affirm that

h = ka0F( -, c

yji *a

*
Bayleigh and other English authors use this name for dimensional analysis.
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That is, instead of obtaining a result with an unknown function

of only one argument, we should have obtained a function of two

arguments. Now a function of two arguments is of course very much
less restricted in its character than a function of only one argument.
For instance, if the function is of the form suggested in two argu-

ments, it would not follow at all that the effect of changing the

velocity is the same as that of changing the heat capacity. Ria-

bouchinsky, therefore, makes a real point.

Lord Rayleigh replies to Riabouchinsky as follows on page 644

of the same volume of Nature.

The question raised by Dr. Riabouchinsky belongs rather to the

logic than the use of the principle of similitude, with which I was

mainly concerned. It would be well worthy of further discussion.

The conclusion that I gave follows on the basis of the usual Fourier

equations for the conduction of heat, in which temperature and heat
are regarded as sui generis. It would indeed be a paradox if the

further knowledge of the nature of heat afforded us by molecular

theory put us in a worse position than before in dealing with a

particular problem. The solution would seem to be that the Fourier

equations embody something as to the nature of heat and tempera-
ture which is ignored in the alternative argument of Dr. Ria-

bouchinsky.

This reply of Lord Rayleigh is, I think, likely to leave us cold.

Of course we do not question the ability of Lord Rayleigh to obtain

the correct result by the use of dimensional analysis, but must we
have the experience and physical intuition of Lord Rayleigh to

obtain the correct result also ? Might not perhaps a little examina-

tion of the logic of the method of dimensional analysis enable us to

tell whether temperature and heat are
* '

really
' '

independent units

or not, and what the proper way of choosing our fundamental

units is ?

Beside the prime question of the proper number of units to choose

in writing our dimensional formulas, this problem of heat transfer

raises many others also of a more physical nature. For instance,

why are we justified in neglecting the density, or the viscosity, or

the compressibility, or the thermal expansion of the liquid, or the

absolute temperature? We will probably find ourselves able to

justify the neglect of all these quantities, but the justification will

involve real argument and a considerable physical experience with

physical systems of the kind which we have been considering. The



12 DIMENSIONAL ANALYSIS

problem cannot be solved by the philosopher in his armchair, but

the knowledge involved was gathered only by someone at some time

soiling his hands with direct contact.

Finally, we consider a fifth problem, of somewhat different char-

acter. Let us find how the electromagnetic mass of a charge of elec-

tricity uniformly distributed throughout a sphere depends on the

radius of the sphere and the amount of the charge. The charge is

considered to be in empty space, so that the amount of the charge

and the radius of the sphere are the only variables. We apply the

method already used. The dimensions of the charge (expressed in

electrostatic units) we get from the definition, which states that the

numbers measuring the magnitude of two charges shall be such that

the force between them is equal to their product divided by the

square of the distance between them. "We accordingly have the

following table.

Name of Quantity. Symbol. Dimensional Formula.

Charge, e M* L* T'
1

Radius of sphere, r L

Electromagnetic mass, m M

We now write

m = f (e,r)

and try to find the form of f so that this relation is independent of

the size of the fundamental units. It is obvious that T cannot enter

the right-hand side of the equation, since it does not enter the left,

and since T enters th right-hand side only through e, e cannot

enter. But if e does not enter the right-hand side of the equation, M
cannot enter either, because M enters only into e. Hence we are

left with a contradiction in requirements which -shows that the

problem is impossible of solution. But here again our Mephistophe-

lean critic suggests that we have left out a dimensional constant.

We demur
;
our system is in empty space, and how can empty space

require dimensional constants? But our critic insists that empty

space does have properties, and when we push him, suggests that

light is propagated with a definite and characteristic velocity. So

we try again, including the velocity of light, c, of dimensions LT~X
,

and now we have

m = f (e,r,c).
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We now no longer encounter the previous difficulty, but imme-

diately, with the help of our experience with more complicated

examples, find the solution to be

m = Const .

re 8

This formula may be verified from any book on electrodynamics,

and our critic is again justified. We worry over the matter of the

dimensional constant, and ultimately take some comfort on recol-

lecting that c is also the ratio of the electrostatic to the electromag-

netic units, but still it is not very clear to us why this ratio should

enter.

On reflecting on the solutions of the problems above, we are

troubled by yet another question. Why is it that an equation which

correctly describes a relation between various measurable physical

quantities must in its form be independent of the size of the funda-

mental units? There does not seem to be any necessity for this in

the nature of the measuring process itself. An equation is a descrip-

tion of a phenomenon, or class of phenomena. It is a statement in

compact form that if we operate with a physical phenomenon in

certain prescribed ways so as to obtain a set of numbers describing

the results of the operations, these numbers will satisfy a certain

equation when substituted into it. For instance, let us suppose our-

selves in the position of Galileo, trying to determine the law of fall-

ing bodies. The material of our observation is all the freely falling

bodies available at the surface of the earth. We use as our instru-

ments of measurement a certain unit of length, let us say the yard,

and a certain unit of time, let us say the minute. With these instru-

ments we operate on all falling bodies according to definite rules.

That is, we obtain all the pairs of numbers we can by associating

for any and all of the bodies the distance which it has fallen from

rest with the interval of time which has elapsed since it started to

fall. And we make a great discovery in the observation that the

number expressing the distance of fall of any body, no matter what

its size or physical properties or the distance it has fallen, is always
a fixed constant factor times the square of the number expressing
the corresponding elapsed time. The numbers which we have ob-

tained by measurement to fit into this relationship were obtained

with certain definite sized units, and our description is a valid
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description, and our discovery is an important discovery even under

the restriction that distance and time are to be measured with the

same particular units as those which we originally employed.
We can write our discovery in the form of an equation

s = Const t
2

.

Now an inhabitant of some other country, who uses some other

system of units equally as unscientific as the yard and the minute,
hears of our discovery, and tries our experiments with his measur-

ing instruments. He verifies our result, except that he must use a

different factor of proportionality in the equation. That is, the

constant depends on the size of the units used in the measurements,
or in other words, is a dimensional constant.

The verification of our discovery by an inhabitant of another

country is reported to us, and we retire to contemplate. We at

length offer the comment that this is as it should be, and that it

could not well be otherwise. We offer to predict in advance just

how the constant should be changed to fit with any system of meas-

urement, and on being asked for details, make the sophisticated

suggestion that we so change the constant as to exactly neutralize

any change in the numbers representing the length or the time, so

that we will still have essentially the same equation as before. In

particular, if the unit of length is made half as large as originally,

so that the number measuring a certain distance of fall is now
twice as large as it was formerly, we multiply the constant by 2 so

as to compensate for the factor 2 by which otherwise the left-hand

side of the equation would be too large. Similarly if the unit of time

is made three times as long as formerly, so that the number express-

ing the duration of a certain free fall becomes only % of its

original value, then we will multiply the constant by 9 to com-

pensate for the factor %, by which otherwise the right-hand side of

the equation would be too small. In other words, we give to the con-

stant the dimensions of plus one in length, and minus two in time,

and so obtain a formula valid no matter what the size of the

fundamental units.

This experience emboldens us, and we try its success with other

much more complicated systems. For instance, we make observations

of the height of the tides at our nearest port, using a foot rule to

measure the height of the water, 'and a clock graduated in hours as
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the time-measuring instrument. As the result of many observations,

we find that the height of water may be represented by the formula

h = 5 sin 0.5066 t.

We now write this in a form to which any other observer using

any other system of units may also fit his measurements by intro-

ducing two dimensional constants into the formula, which takes

the form

h G! = 5 sin 0.5066 C 2 1,

where C x has the dimensions of If"1
,
and C 2 has the dimensions

of T-1
.

This result immediately suggests a generalization. Any equation

whatever, no matter what its form, which correctly reproduces the

results of measurements made with any particular system of units

on any physical system, may be thrown into such a form that it will

be valid for measurements made with units of different sizes, by the

simple device of introducing as a factor with each observed quantity

a dimensional constant of dimensions the reciprocal of those of the

factor beside which it stands, and of such a numerical value that in

the original system of units it has the value unity.

Of course it may often happen that the form of the equation is

such that two or more of these dimensional constants coalesce into a

single factor. The first example above of the falling body is one of

this kind. The general rule just given would have led to the intro-

duction of two dimensional constants, one with s on the left-hand

side of the equation, and the other with t
2 on the right-hand side

of the equation, but by multiplying up, these two may be combined

into a single constant.

Our query is therefore answered, and we see that every equation
can be put in such a form that it holds no matter what the size of

the fundamental units, but we are left in a greater quandary than

ever with regard to dimensional constants. May there not be new
dimensional constants appropriate to every new kind of problem,

and how can we tell beforehand what the dimensional constants will

be ? If we cannot tell beforehand what dimensional constants enter

a problem, how can we hope to apply dimensional analysis? The

dimensional situation thus appears even more hopeless than at first,

for we could see a sort of reason why the gravitational constant

should enter the problem of two revolving bodies, and could even
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catch a glimmer of reasonableness in the entrance of the velocity

of light into the problem of electromagnetic mass, but it is cer-

tainly difficult to discover reasonableness or predictableness if

dimensional constants can be used indiscriminately as factors by the

side of every measured quantity.

In our consideration of the problems above we have also made one

more observation that calls for comment. We have noticed that every

dimensional formula of every measurable quantity has always

involved the fundamental units as products of powers. Is this neces-

sary, or may there be other kinds of dimensional formulas for quan-

tities measured in other ways, and if so, how will our methods apply
to such quantities?

To sum up, we have met in this introductory chapter a number
of important questions which we must answer before we can hope
to use the methods of dimensional analysis with any certainty that

our results are correct. These questions are as follows.

First and foremost, when do dimensional constants enter, and

what is their form?

Is it necessary that the dimensional formula of every measured

quantity be the product of powers of the fundamental kinds of unit ?

What is the meaning of quantities with no dimensions?

Must the functions descriptive of phenomena be restricted to the

sum of products of powers of the variables?

What kinds of quantity should we choose as the fundamentals in

terms of which to measure the others? In particular, how many
kiixds of fundamental units are there ? Is it legitimate to reduce the

number of fundamental units as far as possible by the introduction

of definitions in accord with experimental facts?

Finally, what is the criterion for neglecting a certain kind of

quantity in any problem, as for example the viscosity in the heat

flow problem, and what is the character of the result which we will

get, approximate or exact? And if approximate, how good is the

approximation ?



CHAPTER II

DIMENSIONAL FORMULAS

IN the introductory chapter we considered some special problems
which raised a number of questions that must be answered before

we can hope to really master the method of dimensional analysis.

Let us now begin the formal development of the subject, keeping
these questions in mind to be answered as we proceed.

The purpose of dimensional analysis is to give certain informa-

tion about the relations which hold between the measurable quanti-

ties associated with various phenomena. The advantage of the

method is that it is rapid; it enables us to dispense with making
a complete analysis of the situation such as would be involved in

writing down the equations of motion of a mechanical system, for

example, but on the other hand it does not give as complete infor-

mation as might be obtained by carrying through a detailed analysis.

Let us in the first place consider the nature of the relations be-

tween the measurable quantities in which we are interested. In deal-

ing with any phenomenon or group of phenomena our method is

somewhat as follows. We first measure certain quantities which we
have some reason to expect are of importance in describing ^e \/
phenomenon. These quantities which we measure are of different

kinds, and for each different kind of quantity we have a different

rule of operation by which we measure it, that is, associate the

quantity with a number. Having obtained a sufficient array of

numbers by which the different quantities are measured, we search

for relations between these numbers, and if we are skillful and

fortunate, we find relations which can be expressed in mathematical

form. We are usually interested preeminently in one of the

measured quantities and try to find it in terms of the others. Under
such conditions we would search for a relation of the form

*i = f (x2,x3,x4 , etc.)

where x 15 x2 , etc., stand for the numbers which are the measures

of particular kinds of physical quantity. Thus xx might stand for
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the number which is the measure of a velocity, x2 may stand for the

number which is the measure of a viscosity, etc. By a sort of short-

hand method of statement we may abbreviate thi& long-winded

description into saying that x is a velocity, but of course it really

is not, but is only a number which measures velocity.

Now the first observation which we make with regard to a func-

tional relation like the above is that the arguments fall into two

groups, depending on the way in which the numbers are obtained

physically. The first group of quantities we call primary quantities.

These are the quantities which, according to the particular set of

rules of operation by which we assign numbers characteristic of

the phenomenon, are regarded as fundamental and of an irreducible

simplicity. Thus in the ordinary systems of mechanics, the funda-

mental quantities are taken as mass, length, and time. In any
functional relation such as the above, certain arguments of the

function may be the numbers which are the measure of certain

lengths, masses, or times. Such quantities we will agree to call

primary quantities.

In the measurement of primary quantities, certain rules of opera-

tion must be set up, establishing the physical procedure by which it

is possible to measure a length in terms of a particular length which

we choose as the unit of length, or a time in terms of a particular

interval of time selected as the standard, or in general, it is charac-

teristic of primary quantities that there are certain rules of proce-

dure by which it is possible to measure any primary quantity

directly in terms of units of its own kind. Now it will be found that

we always make a tacit requirement in selecting the rules of opera-

tion by which primary quantities are measured in terms of quanti-

ties of their own kind. This requirement for measurement of length,

for example, is that if a new unit of length is chosen let us say half

the length of the original unit, then the rules of operation must be

such that the number which represents the measure of any particu-

lar concrete length in terms of the new unit shall be twice as large

as the number which was its measure in terms of the original unit.

Very little attention seems to have been given to the methodology of

systems of measurement, and I do not know whether this charac-

teristic of all our systems of measurement has been formulated or

not, but it is evident on examination of any system of measurement

in actual use that it has these properties. The possession of this

property involves a most important consequence, which is that the
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ratio of the numbers expressing the measures of any two concrete

lengths, for example, is independent of the size of the unit with

which they are measured. This consequence is of course at once

obvious, for if we change the size of the fundamental unit by any

factor, by hypothesis we change the measure of every length by the

reciprocal of that factor, and so leave unaltered the ratio of the

measures of any two lengths. This means that the ratio of the

lengths of any two particular objects has an absolute significance

independent of the size of the units. This may be put into the con-

verse form, as is evident on a minute 's reflection. If we require that

our system of measurement of primary kinds of quantity in terms

of units of their own kind be such that the ratio of the measures of

any two concrete examples shall be independent of the size of the

unit, then the measures of the concrete examples must change

inversely as the size of the unit.
,

Besides primary quantities, there is another group of quantities

which we may call secondary quantities. The numerical measures

of these are not obtained by some operation which compares them

directly with another quantity of the same kind which is accepted

as the unit, but the method of measurement is more complicated and

roundabout. Quantities of the second kind are measured by making
measurements of certain quantities of the first kind associated with

the quantity under consideration, and then combining the measure-

ments of the associated primary quantities according to certain rules

which give a number that is defined as the measure of the secondary

quantity in question. For example, a velocity as ordinarily defined

is a secondary quantity. We obtain its measure by measuring a

length and the time occupied in traversing this length (both of

these being primary quantities), and dividing the number measur-

ing the length by the number measuring the time (or dividing the

length by the time according to our shorthand method of state-

ment).

Now there is a certain definite restriction on the rules of opera-

tion which we are at liberty to set up in defining secondary quan-

tities. We make the same requirement that we did for primary quan-

tities, namely, that the ratio of the numbers measuring any two

concrete examples of a secondary quantity shall be independent of

the size of the fundamental units used in making the required

primary measurements. That is, to say that one substance is twice

as viscous as another, for example, or that one automobile is travel-
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ling three times as rapidly as another, has absolute significance,

independent of the size of the fundamental primary units.

This requirement is not necessary in order to make measurement

itself possible. Any rules of operation will serve as the basis of a

system of measurement by which numbers may be assigned to

phenomena in such a way that the particular aspect of the phenome-
non on which we are concentrating attention is uniquely denned by
the number in conjunction with the rules of operation. But the

requirement that the ratio be constant, or we may say the require-

ment of the absolute significance of relative magnitude, is essential

to all the systems of measurement in scientific use. In particular,

it is an absolute requirement if the methods of dimensional analysis

are to be applied to the results of the measurements. Dimensional

analysis cannot be applied to systems which do not meet this

requirement, and accordingly we consider here only such systems.

It is particularly to be noticed that the line of separation between

primary and secondary quantities is not a hard and fast one im-

posed by natural conditions, but is to a large extent arbitrary, and

depends on the particular set of rules of operation which we find

convenient to adopt in defining our system of measurement. For

instance, in our ordinary system of mechanics, force is a secondary

quantity, and its measure is obtained by multiplying a number

which measures a mass and the number which measures an accelera-

tion (itself a secondary quantity). But physically, force is perfectly

well adapted to be used as a primary quantity, since we know what

we mean by saying that one force is twice another, and the physical

processes are known by which force may be measured in terms of

units of its own kind. It is the same way with velocities
;
it is pos-

sible to set up a physical procedure by which velocities may be

added together directly, and which makes it possible to measure

velocity in terms of units of its own kind, and so to regard velocity

as a primary quantity. It is perhaps questionable whether all kinds

of physical quantity are adapted to be treated, if it should suit our

convenience, as primary quantities. Thus it is not at once obvious

whether a physical procedure could be set up by which two viscosi-

ties could be compared directly with each other without measuring
other kinds of quantity.

But this question is not essential to our progress, although of

great interest in itself, and need not detain us. The facts are simply
these. The assigning of numerical magnitudes to measurable quanti-
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ties involves some system of rules of operation such that the quanti-

ties fall into two groups, which we call primary and secondary.

We have stated that the requirement of the absolute significance

of relative magnitude imposes definite restrictions on the operations

by which secondary quantities may be measured in terms of primary

quantities. Let us formulate this restriction analytically. We call

the primary quantities in terms of which the secondary quantity

are measured a, ft, y, etc. Measurements of the primary quantities

are combined in a certain way to give the measure of the secondary

quantity. We represent this combination by the functional symbol f,

putting the secondary quantity = f (a, /?, y, ) . Now if there

are- two concrete examples of the secondary quantity, the associated

primary quantities have different numerical magnitudes. Let us

denote the set associated with the first of the concrete examples by
the subscript 1, and that with the second set by the subscript 2.

Then f (c^, /?15 y 1? ) will be the measure of the first concrete

example, and f (a2 , /?2 , y 2 , ) will be the measure of the second.

We now change the size of the fundamental units. We make the

unit in terms of which a is measured 1/xth as large. Then, as we

have shown, the number measuring a will be x times as large, or xa.

In the same way make the unit measuring /? 1/yth as large, and the

measuring number becomes y/?. Since our rule of operation by which

the numerical measure of the secondary quantity is obtained from

the associated primary quantities is independent of the size of the

primary units, the number measuring the secondary quantity now
becomes f {xa, y/?, ) . The measures of the two concrete exam-

ples of the secondary quantity will now be f (xa , y^, ) and

f (xa2,y/?2 , ).

Our requirement of absolute significance of relative magnitude
now becomes analytically

This relation is to hold for all values of a1? ft, ,
a2 , ft,

andx, y, z, .

We desire to solve this equation for the unknown function f.

Rewrite in the form

f (**,, yft, )
= f (xa,, yft,

- -
) X *<a"&' *
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Differentiate partially with respect to x. Use the notation fx to

denote the partial derivative of the function with respect to the first

argument, etc. Then we obtain

% fi (**!, yft,
----

)
= oa fi (xo2 , y/?2 ,

-
-) X

f

""

Now put x, y, z, etc., all equal to 1. Then we have

> f (/&, ---- ) f (a,, ft,
----

)*

This is to h61d for all values of a^ /31?
---- and a2 , 2 ,

-

Hence, holding a2 , /?2 ,

----
fast, and allowing ax , j81?

---- to vary,

we have

a dt
-
g-

== Const,

or

JL
df _ Const

T ^ "
~v~>

which integrates to

The factor C is a function of the other variables /?, y,
----

.

The above process may now be repeated, differentiating partially

successively with respect to y, z, etc., and integrating. The final

result will obviously be

f =C
where a, b, c,

- - and C are constants.

Every secondary quantity, therefore, which satisfies the require-

ment of the absolute significance of relative magnitude must be

expressible as some constant multiplied by arbitrary powers of the

primary quantities. We have stated that it is only secondary quanti-

ties of this kind which are used in scientific measurement, and no

other kind will be considered here.

We have now answered one of the questions of the introductory

chapter as to why it was that in the dimensional formulas the

fundamental units always entered as products of powers.

It is obvious that the operations by which a secondary quantity

is measured in terms of primary quantities are defined mathemati-

cally by the coefficient C, and by the exponents of the powers of
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the various primary quantities. For the sake of simplicity, the

coefficient is almost always chosen to be unity, although there is no

necessity in such a choice. There are systems in use in which the

factor is not always chosen as unity. Thus the so-called rational and

the ordinary electrostatic units differ by a factor V^w- Any differ-

ences in the numerical coefficient are not important, and are always

easy to deal with, but the exponents of the powers are a matter of

vital importance. The exponent of the power of any particular

primary quantity is by definition the
' '

dimension ' '

of the secondary

quantity in that particular primary quantity.

The "dimensional formula" of a secondary quantity is the aggre-

gate of the exponents of the various primary quantities which are

involved in the rules of operation by which the secondary quantity

is measured. In order to avoid confusion, the exponents are asso-

ciated with the symbols of the primary quantities to which they

belong, that symbol being itself written as raised to the power in

question.

For example, a velocity is measured by definition by dividing a

certain length by a certain time (do not forget that this really means

dividing the number which is the measure of a certain length by
the number which measures a certain time). The exponent of length

is therefore plus one, and the exponent of time is minus one, and

the dimensional formula of velocity is LT"1
. In the same way a force

is defined in the ordinary Newtonian mechanical system as mass

times acceleration. The dimensions of force are therefore equal to

mass times the dimensions of acceleration. The dimensions of accel-

eration are obtained from its definition as time rate of change of

velocity to be LT~2
,
which gives for the dimensions of force MLT~2

.

It is to be noticed that the dimensions of any primary quantity
are by a simple extension of the definition above merely the dimen-

sional symbol of the corresponding primary quantity itself.

It is particularly to be emphasized that the dimensions of a pri-

mary quantity as defined above have no absolute significance what-

ever, but are defined merely with respect to that aspect of the rules

of operation by which we obtain the measuring numbers associated

with the physical phenomenon. The dimensional formula need not

even suggest certain essential aspects of the rules of operation. For

example, in the dimensional formula of force as mass times accelera-

tion, the fact is not suggested that force and acceleration are vectors,

and the components of each in the same direction must be com-
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pared. Furthermore, in our measurements of nature, the rules of

operation are in our control to modify as we see fit, and we would

certainly be foolish if we did not modify them to our advantage

according to the particular kind of physical system or problem with

which we are dealing. We shall in the following find many problems
in which there is an advantage in choosing our system of measure-

ment, that is, our rules of operation, in a particular way for the

particular problem. Different systems of measurement may differ

as to the kinds of quantity which we find it convenient to regard
as fundamental and in terms of which we define the others, or they

may even differ in the number of quantities which we choose as

fundamental. All will depend on the particular problem, and it is

our business to choose the system in the way best adapted to the

problem in hand.

There is therefore no meaning in saying "the" dimensions of a

physical quantity, until we have also specified the system of meas-

urement with respect to which the dimensions are determined. This

is not always kept clearly in mind even by those who in other condi-

tions recognize the relative nature of a dimensional formula. As for

example, Buckingham in Phys. Rev. 4, 357, 1914, says: "... Mr.

Tolman's reasoning is based on the assumption that absolute tem-

perature has the dimensions of energy, and this assumption is not

permissible." Tolman,
1 in a reply, admitted the correctness of this

position. My position in this matter would be that Mr. Tolman has

a right to make the dimensions of temperature the dimensions of

energy if it is compatible with the physical facts (as it seems to be)

and if it suits his convenience.

This view of the nature of a dimensional formula is directly

opposed to one which is commonly held, and frequently expressed.

It is by many considered that a dimensional formula has some

esoteric significance connected with the
' '

ultimate nature " of an

object, and that we are in some way getting at the ultimate nature

of things in writing their dimensional formulas. Such a point of

view sees something absolute in a dimensional formula and attaches

a meaning to such phrases as "really" independent, as in Ria-

bouchinsky's comments on Lord Rayleigh's analysis of a certain

problem in heat transfer. For this point of view it becomes impor-
tant to find the "true" dimensions, and when the "true" dimen-

sions are found, it is expected that something new will be suggested

about the physical properties of the system. To this view it is
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repugnant that there should be two dimensional formulas for the

same physical quantity. Often a reconciliation is sought by the

introduction of so-called suppressed dimensions. Such speculations

have been particularly fashionable with regard to the nature of

the ether, but so far as I know, no physical discovery has ever fol-

lowed such speculations; we should not expect there would if the

view above is correct.

In the appendix of this chapter are given a number of quotations

characteristic of this point of view, or others allied to it.



26 DIMENSIONAL ANALYSIS

APPENDIX TO CHAPTER II

QUOTATIONS ILLUSTRATING VAKIOUS COMMON POINTS OF VIEW
WITH REGARD TO THE NATURE OF DIMENSIONAL FORMULAS

R. C. TOLMAN, Phys. Rev. 9 : 251, 1917.

. . . our ideas of the dimensions of a quantity as a shorthand re-

statement of its definition and hence as an expression of its essential

physical nature.

A. W. RUCKER, Phil. Mag. 27 : 104, 1889.

IN the calculation of the dimensions of physical quantities we not

infrequently arrive at indeterminate equations in which two or more
unknowns are involved. In such cases an assumption has to be made,
and in general that selected is that one of the quantities is an ab-

stract number. In other words, the dimensions of that quantity are

suppressed.
The dimensions of dependent units which are afterwards deduced

from this assumption are evidently artificial, in the sense that they
do not necessarily indicate their true relations to length, mass, and
time. They may serve to test whether the two sides of an equation
are correct, but they do not indicate the mechanical nature of the

derived units to which they are assigned. On this account they are

often unintelligible.

W. W. WILLIAMS, Phil. Mag. 34 : 234, 1892.

That these systems (i.e., the electrostatic and the electromagnetic)
are artificial appears when we consider that each apparently ex-

presses the absolute dimensions of the different quantities, that is,

their dimensions only in terms of L, M, and T
;
whereas we should

expect that the absolute dimensions of a physical quantity could be

expressed in only one way. Thus from the mechanical force between
two poles we get

and this, being a qualitative as well as a quantitative relation,
involves the dimensional equality of the two sides. ... In this way
we get two different absolute dimensions for the same physical

quantity, each of which involves a different physical interpreta-
tion. . . .

The dimensional formula of a physical quantity expresses the

numerical dependence of the unit of that quantity upon the funda-
mental and secondary units from which it is derived, and the indices

of the various units in the formula are termed the dimensions of the
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quantity with respect to those units. When used in this very re-

stricted sense, the formulae only indicate numerical relations be-

tween the various units. It is possible, however, to regard the matter
from a wider point of view, as has been emphasized by Professor
Riicker in the paper referred to. The dimensional formulae may be
taken as representing the physical identities of the various quanti-

ties, as indicating, in fact, how our conceptions of their physical
nature (in terms, of course, of other and more fundamental con-

ceptions) are formed, just as the formula of a chemical substance
indicates its composition and chemical identity. This is evidently
a more comprehensive and fundamental view of the matter, and
from this point of view the primitive numerical signification of a
dimensional formula as merely a change ratio between units becomes
a dependent and secondary consideration.

The question then arises, what is the test of the identity of a

physical quantity ? Plainly it is the manner in which the unit of that

quantity is built up (ultimately) from the fundamental units L, M,
and T, and not merely the manner in which its magnitude changes
with those units.

That the dimensional formulae are regarded from this higher
standpoint, that is, regarded as being something more than mere
1 '

change ratios
' ' between units, is shown by the fact that difficulties

are felt when the dimensions of two different quantities, e.g., couple
and work, happen to be the same.

S. P. THOMPSON, Elementary Lessons in Electricity and Magnetism,
p. 352.

It seems absurd that there should be two different units of elec-

tricity.

R. A. FESSENDEN, Phys. Rev. 10 : 8, 1900.

The difference between the dimensional formula and the qualita-
tive formula or quality of a thing is that, according to the defini-

tions of the writers quoted above, the dimensions "are arbitrary,
"

are "merely a matter of definition and depend entirely upon the

system of units we adopt,
"

whilst the quality is an expression of
the absolute nature, and never varies, no matter what system of
units we adopt. For this to be true, no qualities must be suppressed.

REFERENCES

(1) R. C. Tolman, Phys. Rev. 6, 1915, p. 226, footnote.



CHAPTER III

ON THE USE OF DIMENSIONAL FORMULAS IN
CHANGING UNITS

WE saw in the last chapter how to obtain the dimensional formula

of any quantity in terms of the quantities which we chose by defini-

tion to make fundamental. Our method of analysis showed also the

connection between the numerical magnitude of the derived quantity

and the fundamental quantities. Thus if length enters to the first

power in the dimensional formula, we saw that the number measur-

ing that quantity is doubled when the unit of length is halved, or

the numerical measures are inversely as the size of the unit, raised

to the power indicated in the dimensional formula.

Let us consider a concrete example. What is a velocity of 88 feet

per second when expressed in miles per hour ? The dimensional for-

mula of a velocity is LT"1
. Now if our unit of length is made larger

in the ratio of a mile to a foot, that is, in the ratio of 5280 to 1, the

velocity will be multiplied by the factor 1/5280, because length

enters in the dimensional formula to the first power. And similarly,

if the unit of time is made larger in the ratio of the hour to the

second, that is, in the ratio of 3600 to 1, the velocity will be multi-

plied by the factor 3600, because time enters the dimensional for-

mula to the inverse first power. To change from feet per second to

miles per hour we therefore multiply by 3600/5280, and in this

particular case the result is 88 X 3600/5280, or 60 miles per hour.

Now the result of these operations may be much contracted and

simplified in appearance by a sort of shorthand. We write

mile

sec. 1 sec. _J_ h
3600

88
3600 mile

5280 hour

= 60^?.
hour
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A little reflection, considering the relation of the dimensional

formula to the operations by which we obtain the measuring number

of any physical quantity, will at once show that this procedure is

general, and that we may obtain any new magnitude in terms of

new units from the old magnitude by using the dimensional formula

in precisely the same way. This method of use of the dimensional

formula is frequently very convenient, and is the simplest and most

reliable way of changing units with which I am acquainted.

In treating the dimensional formula in this way we have endowed

it with a certain substantiality, substituting for the dimensional

symbol of the fundamental unit the name of the concrete unit

employed, and then replacing this concrete unit by another to which

it is physically equivalent. That is, we have treated the dimensional

formula as if it expressed operations actually performed *on physical

entities, as if we took a certain number of feet and divided them by
a certain number of seconds. Of course, we actually do nothing of

the sort. It is meaningless to talk of dividing a length by a time;

what we actually do is to operate with numbers which are the meas-

ure of these quantities. We may, however, use this shorthand method

of* statement, if we like, with great advantage in treating problems
of this sort, but we must not think that we are therefore actually

operating with the physical things in any other than a symbolical

way.
1

This property of the dimensional formula of giving the change in

the numerical magnitude of any concrete example when the size of

the fundamental units is changed makes possible a certain point

of view with regard to the nature of a dimensional formula. This

view has perhaps been expressed at greatest length by James Thom-
son in B. A. Rep. 1878, 451. His point of view agrees with that taken

above in recognizing that it is meaningless to say literally that a

velocity, for instance, is equal to a length divided by a time. We
cannot perform algebraic operations on physical lengths, just the

same as we can never divide anything by a physical time. James
Thomson would prefer, instead of saying velocit/= length/time,
to say at greater length

- Change ratio of velocity = Change ratio of length

Change ratio of time

Of course Thomson would not insist on this long and clumsy expres-
sion in practise, but after the 'matter is once understood, would
allow us to write a dimensional formula in the accustomed way.
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This point of view seems perfectly possible, and as far as any
results go, it cannot be distinguished from that which I have

adopted. However, by regarding the symbols in the dimensional for-

mula as reminders of the rules of operation which we used physi-

cally in getting the numerical measure of the quantity, it seems to

me that we are retaining a little closer contact with the actual

physics of the situation than when we regard the symbols as repre-

senting the factors used in changing from one set of units to another,

which after all is a more or less sophisticated thing to do, and which

is not our immediate concern when first viewing a phenomenon.
Beside the sort of change of unit considered above, in which we

change merely the sizes of the fundamental units, there is another

sort of change of unit to be considered, in which we pass from one

system of measurement to another in which the fundamental units

are not only different in size, but different in character. 2
Thus, for

example, in our ordinary system of units of Newtonian mechanics

we regard mass, length, and time as the fundamental units, but it is

well known that we might equally regard force, length, and time

as fundamental. We may therefore expect to encounter problems of

this sort: how shall we express a kinetic energy of 10 gm cm2 sec~2

in a system in which the units are the dyne, the cm, and the sec ?

There are obviously two problems involved here. One is to find

the dimensional formula of kinetic energy in terms of force, length,

and time, and the other is to find the new value of the numerical

coefficient in that particular system in which the unit of force is

the dyne, the unit of length the centimeter, and the unit of time the

second.

The transformed dimensional formula is obtained easily if we
observe the steps by which we pass from one system to the other.

The transition is of course to be made in such a way that the two

systems are consistent with each other. Thus if force is equal to mass

times acceleration in one system, it is still to be equal to mass times

'. acceleration in the other. If this were not so, we would be concerned

merely with a formal change, and the thing which we might call

force in the one system would not correspond to the same physical

complex in the other. This relation of force and mass in the two

systems is maintained by an application of simple algebra. In the

first system we define force as mass times acceleration, and in the

second we define mass as force divided by acceleration. Thus in

each system the secondary quantity is expressed in terms of the
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fundamental quantities of the system, and the two systems are

consistent.

The correct relation between the dimensional formulas in the two

systems is to be maintained simply by writing down the dimensional

formulas in the first system, and then inverting these formulas by

solving for the quantities which are to be regarded as secondary in

the second system. In the special case considered, we would have

the following dimensional formulas :

In the first system Force = MLT~2

In the second system Mass = FL-1T 2
.

The transformation of the numerical coefficient is to be done

exactly as in the example which we have already considered by

treating the dimensional symbols as the names of concrete things,

and replacing the one to be eliminated by its value in terms of the

one which is to replace it. Thus the complete work associated with

the problem above is as follows :

Igm (lcm)*_

(i860)'

We have to find the transformation equation of 1 gm. into terms

of dynes, cm, and sec. Now

1 dyne = 1^ lcm

(1 sec)
9

Hence

sec)
a

1 cm
and substituting

1Q Igm (1cm)
8

__ 1Q
1 dyne (1 sec)

8

x (1 cm)
8

(1 sec)
8

1 cm (1 sec)
8

= 10 dyne cm,

which of course is a result which we immediately recognize as true.

Let us consider the general case in which we are to change from

a system of units in which the fundamental quantities are X 1; X2 ,

and X3 to a system in which the fundamentals are Y
,
Y2 ,

and Y3 .

We must first have the dimensional formulas of Yt ,
Y2 ,

and Y3 in

terms of X1? X2 ,
and X3 . Let us suppose the dimensions of Yt are

at ,
a2 ,

and a3 ,
those of Y2 ,

b 1? b2 ,
and b3 ,

and those of Y3 ,
c t ,

c 2 ,
and c3
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in Xlf X2 ,
and X3 respectively. Then in any concrete case we may

write

where the C's are numerical coefficients. These equations are to be

solved for the X's in terms of the Y's. This may be done conven-

iently by taking the logarithm of the equations, giving,

a logXt + a2 logX2 + a3 log X3
= log C1 Yx

bx logXt + b2 log X 2 + b3 log X3
= log C 2 Y2

Cj. log Xx + c 2 log X2 + c3 log X3
= log C 3 Y3

These are algebraic equations in the logarithms, and may be

solved immediately. The solution for X is

X =
_L_ A c 8 c 3 ^_ A a2 a3 _^_ A

'

'

y (Ca
Y

a )

a8aj
*

i (C3
Y

3)

lb2bal
'

In this solution A stands for the determinant of the exponents.

a2

b

The values of X2 and X3 are to be obtained from the value for Xx

by advancing the letters.

Now let us consider an example. It is required to find what a

momentum of 15 tons (mass) miles/hour becomes in that system

whose fundamental units are the "2 Horsepower," the "3 ft per

sec," and the "5 ergs." This ought to be sufficiently complicated.

Introduce the abbreviations:

Y2 for the "3 ft per sec"

Y3 for the "5 ergs."

1 Ib (force) 1 ft

Y = 2 H.P. 2 X 33000-~ ~
1mm

In the first place we have to change Ibs (force) to Ibs (mass).
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Now a pound force is that force which imparts to a mass of one

pound an acceleration of 32.17 ft/sec
2

.

Hence
1 Ib (mass) 1 ft

1 Ib force = 32.17 -r-
(Isec)

2

and

Ib mass 1 ft 1ft

(1 sec)
3

1 min
Y1== 66000 x 32.17

(i sec)'

= 32.17 X 66000 ^TF
ton (^ mi)

3

dnnnr hour)
3

-fa hour

= 2.962 x 10 4
i^^

t

hour 8

or, writing in the standard form

3.380 X 10~5
Y! = ton1 mi2 hour-3

.

Y 3 3 ^A-7 mi _ ^5 mi

sec -.rirW hour 22 hour 7

Again

or

.4889 Y2 = ton mi1 hour"1
.

And again

v _ , _ ,.1 gin (1cm)
3

_ 1.103 x lO^tons (6.214 x 10- 6
mi)

2

x o ergs o D .

(1 sec)' ( hour)'
or

3.622 X 108 Y
3
= tons1 mi2 hour~2

.

We rewrite these to obtain our system of equations in the stand-

ard form

3.380 x 10- 5

Y, - ton 1 mi3 hour- 3

.4889 Y
2
= ton mi 1 hour- 1

3.622 xlO 8 Y
3
= ton 1 mi2 hour- 3

.

We now solve for the ton, mile, and hour in terms of Y1? Y2 ,
and

Y3 . We first find the determinant of the exponents.

A =
12-3
01-1122

__ -

This is pleasingly simple.
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The general scheme of solution above now gives

1 ton = (3.380 x H)- 6

Y,) (.4889 Y a)-
3

(3.622 x 10 8 Y
3)'

1 mile =
(

"
)-> (

"
)+ (

"
)
+1

lhour =
(

" )'(")'( "
)
+
S

or simplifying,

1 ton = 15.16 x 10 8 Y
a

- 2 Y
3

1 mile = 5.223 x 10 ia Y^ 1 Y
3
Y

s

1 hour = 1.069 X 10 13

Y,-
1 Y

3
.

And finally

tons mi _ 15.16 x 5.223 x 10ao

Y,-
a

Y, Y,-
1

Y, Y 3

hour 1.069 x 1013

Y^' Y3

= 1.112 X 10 10

Y,,-
1 Y

3

5 ergs- L112 >< 10 '

ts/s
which is the answer sought. It is to be noticed that the result in-

volves only two of the new kind of unit instead of three, the "2
H.P. ' '

having dropped out. This of course will not in general be the

case. It might at first sight appear that we might take advantage of

this fact and eliminate some of the computation, but on examination

this turns out not to be the case, for each of the numerical factors

connecting the ton, the mile, and the hour with the new units is seen

to be involved in the final result.

There are two things to be noticed in connection with the above

transformations. In the first place it is not always possible to pass

from a system of one kind of units to a system of another kind, but

there is a certain relation which must be satisfied. This is merely the

condition that the equations giving one set of units in terms of the

other shall have a solution. This condition is the condition that the

transformed equations, after the logarithms have been taken, shall

also have a solution, and this is merely the condition that a set of

algebraic equations have a solution. This condition is that the deter-

minant of the coefficients of the algebraic equations shall not vanish.

Since the coefficients of the algebraic equations in the logarithms are

the exponents of the original dimensional formulas, the condition is

that the determinant of the exponents of the dimensional formulas

for one system of units in terms of the other system of units shall

not vanish.

In attempting any such transformation as this, the first thing is
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to find whether it is a possible transformation, by writing down the

determinant of the exponents. If this vanishes, the transformation

is not possible. This means that one of the new kinds of unit in

terms of which it is desired to build up the new system of measure-

ment is not independent of the others. Thus in the example, if

instead of the
' '

5 erg
' '

as the third unit of the new system we had

chosen the
' '

5 dyne,
' ' we would have found that the determinant of

the exponents vanishes, and the transformation would not have been

possible. This is at once obvious from other considerations. For a

horse power is a rate of doing work, and is of the dimensions of the

product of a force and a velocity, and the second unit was of the

dimensions of a velocity, so that the proposed third unit, which was

of the dimensions of a force, could be obtained by dividing the first

unit by the second, and would therefore not be independent of them.

The second observation is that the new system of units to which

we want to transform our measurement must be one in which there

are the same number of kinds of fundamental unit as in the first

system. If this is not true, we shall find that, except in special cases,

there are either too few or too many equations to allow a solution for

the new units in terms of the old. In the first case the solution is

indeterminate, and in the second no solution exists.
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CHAPTER IV

THE n THEOREM

IN the second chapter we saw that the dimensional formulas of all

the quantities with which we shall have to deal are expressible as

products of powers of the fundamental quantities. Let us see what

inferences this enables us to draw about the forms of the relations

which may hold between the various measurable quantities con-

nected with a natural phenomenon.
We also saw in the second chapter that at least sometimes the

functional relation will involve certain so-called dimensional con-

stants as well as measurable quantities. We met two examples of

dimensional constants, namely, the gravitational constant, and the

velocity of light in empty space, and we assigned dimensional

formulas to these constants. Now it is most important to notice that

these two dimensional constants had dimensional formulas of the

type proved to be necessary for the measurable quantities, namely,

they were expressible as products of powers of the fundamental

quantities. This is no accident, but it is true of all the dimensional

constants with which we shall have to deal. The proof can best be

given later when we have obtained a little clearer insight into the

nature of a dimensional constant. A certain apparent exception, the

so-called logarithmic constant, will also be dealt with later. We may
remark here, however, that one class of dimensional constant must

obviously be of this form. We saw that if we start with an empirical

equation which experimentally has been found to be true from

measurements with a particular set of units, this equation can be

made to hold for all sizes of the units by the device of introducing

as a factor with each measurable quantity a dimensional constant of

dimensions the reciprocal of those of the measured quantity. Since

the dimensions of every measured quantity are products of powers,

the dimensions of the reciprocal must also be products of powers,

and the theorem is proved for this restricted class of dimensional

constants. We will for the present accept as true the statement that

all dimensional constants have this type of dimensional formula.
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Now let us suppose that we have a functional relation between

certain measured quantities and certain dimensional constants. We
shall suppose that the dimensional formulas of all these quantities

are known, including the dimensional constants. We shall further-

more suppose that the functional relation is of such a form that it

remains true formally without any change in the form of the func-

tion when the size of the fundamental units is changed in any way
whatever. An equation of such a form we shall call a "complete"

equation.
1 We have seen that it is by no means necessary that an

equation should be a complete equation in order to be a correct and

adequate expression of the physical facts, although the contrary

statement is almost always made, and is frequently made the basis

of the proof of the principle of dimensional homogeneity of
' '

physi-

cal
' '

equations. Although every adequate equation is not necessarily

complete, we have seen that every adequate equation can be made

complete in a very simple way, so that the assumption of complete-

ness is no essential restriction in our treatment, although it makes

necessary a more careful examination of the question of dimensional

constants.

The assumption of the completeness of the equation is absolutely

essential to the treatment, and in fact dimensional analysis applies

only to this type of equation. It is to be noticed that the changes of

fundamental unit contemplated in the complete equation are re-

stricted in a certain sense. We may change only the size of the

fundamental units and not their character. Thus, for example, a

complete equation which holds for all changes in the size of the

fundamental units as long as these units are units of mass, length,

and time, no longer is true, and in fact becomes meaningless in

another system of units in which mass, force, length, and time are

taken as fundamental.

With this preliminary, let us suppose that we have a complete

equation in a certain number of measurable quantities and dimen-

sional constants, valid for a certain system of fundamental units.

Since we are concerned only with the dimensional formulas of the

quantities involved, we need not distinguish in our treatment the

measurable quantities from the dimensional constants. We will

denote the variables by a, /?, y, to n quantities, and suppose
there is a functional relation
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The expanded meaning of this expression is that if we substitute

into the functional symbol the numbers which are the measures of

the quantities a, ft etc., the functional relation will be satisfied. We
use a interchangeably for the quantity itself and for its numerical

measure, as already explained. Now the fact that the equation is a

complete equation means that the functional relation continues to

be satisfied when we substitute into it the numbers which are the

numerical measure of the quantities a, ft
---- in a system of meas-

urement whose fundamental units differ in size from those of the

fundamental system in any way whatever. Now we have already

employed a method, making use of the dimensional formulas, for

finding how the number measuring a particular quantity changes

when the size of the fundamental units changes. This was the sub-

ject of the second chapter. Let us call the fundamental units m^ m2 ,

m3 , etc., to m quantities, and denote by ax ,
a2 ,

a3 ,

----
etc., the

dimensions of a, by ft, ft>, ft$,
----

etc., the corresponding dimen-

sions of ft etc., in m1? m2 ,
m3 , etc., respectively.

We now decrease the size of the fundamental units m^ m2 , etc.,

by the factors xly x2 ,
etc. Then the numerical measures of a, ft etc.,

in terms of the new units, which we will call a1
, /P, etc., are, as

proved in Chapter III, given by

j8-=x{.xf.
----

ft

Now since the equation <f> (a
----

) =0 is a complete equation,

it must still hold when a1
, ft

1
,

----
etc., are substituted for a, ft,

----
. That is

or

*(X?1X. ---- a,X?ixf.- -ft ---- )
= 0.

This equation must hold for all values of x
,
x2 ,

etc.

Now differentiate successively partially with respect to x
,
x2 ,

etc., and after the differentiation put all the x's equal to 1. Then we

obtain the following set of equations :
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Consider now the first of these equations. Introduce new inde-

pendent variables

j_ j_

a" = a% ft" ft? i,
- - - etc.

The equation now becomes

^*+ + 0r/ *+:.. a
do" 3/2"

The solution of this equation is well known, it being a special case

covered by Euler's theorem. The solution is the most general homo-

geneous function of the zeroth order in the variables a", /?",

etc. Now by a function homogeneous of the zeroth order we mean
such a function that its numerical value is unchanged when all the

arguments are multiplied by the same constant factor, which may
be entirely arbitrary. It follows therefore that the arguments of the

homogeneous function must be the original arguments a", ft",

etc., grouped in such a way that they are unchanged in value when
all of the original arguments are multiplied by any factor, the same

for all. Now the analysis of Chapter II applies here immediately.

The analysis of that chapter applied to the case of each of the fun-

damental units being multiplied by a different arbitrary factor.

The case here is a special form of the previous case, since we here

require that the result shall be unchanged when each of the argu-

ments is multiplied by the same arbitrary factor. It follows that the

most general way in which the arguments a", ft", etc., can

be grouped is as products of powers. If we substitute the special

requirements into such a product of powers, we see at once that the

sum of the exponents of a", ft", etc., in any such product of

powers must be zero. Let us write such a product in the form

(a")". . (j8")".

Then we have the condition
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Substituting now the values of a, /?,
----

etc., in terms of a

----
etc., the typical product takes the form

It is at once obvious that there are n-1 independent products of

this form, since there are n quantities a
,
b

,

----
etc., and these

are subject to only one restriction. The arbitrary function has, there-

fore, n-1 independent arguments.
ai

Consider now the dimensions of the product a^ ---- in the

fundamental unit m^ Since the dimensions of a in m are al5 the

ai bi
f

dimensions of a! in n^ are ax . Similarly the dimensions of /? ^ inn^

areb-t.But'the exponents satisfy the condition a + b -]
-----= 0,

so that we see at once that the products which are the arguments of

the arbitrary function must all be dimensionless in n^.

The second of the equations A, by precisely the same argument

imposes the additional restriction that the arguments of the arbi-

trary function be products of the arguments which are dimension-

less in m2 . In imposing this additional restriction, the number of

independent arguments of the arbitrary function is diminished

from n 1 to n 2.

In the same way the remaining equations of A demand that the

products shall be dimensionless in m3 ,
m4 , etc., until finally we find

that the products must be dimensionless in all the fundamental

units. At the same time, the number of independent products, which

serve as the arguments of the unknown function, are cut down in

number to n m.

Hence we have the final result. // the equation <f> (a, /?, y,
----

)

= is to be a complete equation, the solution has the form

F(n1?
n2 ,

----)=o

where the n's are the nm independent products of the arguments

a, /?,
---- etc., which are dimensionless in the fundamental units.

The result stated in this form is known as the H theorem, and

seems to have been first explicitly stated by Buckingham,
4
although

an equivalent result had been used by Jeans,
3 without so explicit a

statement.
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The solution in the form above may be solved explicitly for any
one of the products, giving the equivalent form of result

a = p**-f* 4>(n2,n3,- -)

where the x 's are such that a ft~
x
i y~*2 is dimensionless.

The result in this form embodies the mathematical statement of

the principle of dimensional homogeneity. For the arbitrary func-

tion on the right-hand side is a function of arguments each of which

is of zero dimensions, so that every term of the resulting function

must itself be dimensionless. Every term of this function is to be

multiplied by a term of the same dimensions as the left-hand side of

the equation, with the result that every term on the right-hand side

has the same dimensions as the left-hand side. The terms may now
be rearranged in any way that we please, but whatever the rear-

rangement, the dimensions of all terms will remain the same. This

is known as the principle of dimensional homogeneity.

The attempt is often made to give an off-hand proof of the princi-

ple of dimensional homogeneity from the point of view which

regards a dimensional formula as an expression of the "essential

physical nature" of a quantity. Thus it is said that an equation

which is an adequate expression of the physical facts must remain

true no matter how the fundamental units are changed in size, for

a physical relationship cannot be dependent on an arbitrary choice

of units, and if the equation is to remain true for all choices of units

the dimensions of each term must be the same, for otherwise we
would have quantities of different physical natures put equal to

each other. For instance, we could not according to this view have

a quantity of the dimensions of a length on the one side of an equa-

tion equal to a quantity of the dimensions of an area on the other

side, for it is absurd that an area should be equal to a length.
2 The

criticism of this point of view should be obvious after what has

been said about an equation merely being an equation between

numbers which are the numerical measures of certain physical

quantities.

It is to be most carefully noticed that the work above was subject

to a most important tacit restriction at the very outset. In putting
< (a, (3, )

= it was tacitly assumed that this is the only rela-

tion between a, ft etc., and that the partial derivatives may
be computed in the regular way on this assumption. If a, ft y, etc.,

are connected by other relations than
</> (a, ft )

= 0, then the
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analysis above does not hold, and the results are no longer true. For

it is not true in general that an equation which is a complete equa-

tion, that is, an equation which remains true when the size of the

fundamental units is changed, is dimensionally homogeneous. Such

an equation is dimensionally homogeneous of necessity only when

there is no other numerical relation between the variables than that

defined by the equation itself. Consider as an example a falling

body. Let v be its velocity, s the distance of fall, t the time of fall,

and g the acceleration of gravity. Now these quantities are related,

and there is more than one equation of connection, because both v

and s are fixed when t and g are given. The relations connecting

these quantities are v = gt, and s = %gt2
. In the light of the above

we would expect that a complete equation connecting v, s, g, and t

need not be dimensionally homogeneous. An example can be given

immediately, namely,

v + s = gt + y2 gt2
.

This is obviously a complete equation in that it is true and remains

true no matter how the fundamental units of length and time are

changed in size. We may, if we please, write from these elements

an equation which is very much more unusual and offensive in

appearance, such as

r
. S -f gtl sinh(s-*gt 2

)

v sin = gt cosh (v gt).

L v J

This again is a complete equation; it is not dimensionally homo-

geneous, and also offends our preconceived notions of what is possi-

ble in the way of transcendental functions.

The possibility of equations like those just considered is in itself

a refutation of the intuitional method of proof of the principle of

dimensional homogeneity sometimes given.

The equation v + s = gt + %gt2 reminds one of the procedure

used in vector analysis, in which three scalar equations may be

replaced by a single vector equation. Obviously we may add together

any number of complete equations and obtain a result which remains

true. And provided that the dimensions of the original equations

were all different, the resulting compound equation (complete but

not dimensionally homogeneous) may be decomposed, like the vector

equation, into a number of simpler equations, by picking out the

parts with the same dimensions. I do not know whether this method
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of throwing the results into a compact form can ever be made to

yield any practical advantages or not.

Let us now return to the first form in which we put the result

above, namely,

FCn^n,,- -)=0.

Consider the n 's and how they are formed from the variables. "Write

a typical n in the form

The a, b, c, etc., are to be so chosen that this is dimensionless.

Substituting now the dimensional symbols of a, /?,
----

etc., gives

as many equations of condition between a, b, c, etc., as there are

kinds of fundamental unit. The equations are

a2 a +
I

=

There are m equations, each with n terms. Now the theory of the

solutions of such sets of equations may be found in any standard

work on algebra. In general, n will be greater than m. Under these

conditions there will in general be n m independent sets of solu-

tions. That is, there will in general be n m independent dimension-

less products, and the arbitrary function F will be a function of

n m variables.

In certain special cases this conclusion will have to be modified.

If, for instance, n = m, there will in general be no solution, but

there may be in the special case that the determinant of the ex-

ponents

vanishes.

Furthermore, there may be more than n m independent solutions

if it should happen that all the m-rowed determinants of the ex-

ponents vanish. This, of course, will not very often occur, but we
shall meet at least one example later.
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In the general case, where there are n m independent solutions,

it is generally possible to select n m of the quantities a, b, c, etc., in

any convenient way, assign to them n m sets of independent values,
and solve for the remaining quantities, thus obtaining n m sets of

values which determine n m dimensionless products. Sometimes

this is not possible, and the particular set of the quantities a, b, c,

etc., to which arbitrary values can be assigned cannot be chosen with

complete freedom. This occurs when certain determinants chosen

from the array of the exponents vanish. We will not stop here to

develop a general theory, but let the exceptions take care of them-

selves, as it is always easy to do in any special problem.
It is to be noticed that the n theorem does not contain anything

essentially new, and does not enable us to treat any problems which

we could not already have handled by the methods of the introduc-

tion. The advantage of the theorem is one of convenience
;
it places

the result in a form in which it can be used with little mental effort,

and in a form of a good deal of flexibility, so that the results of the

dimensional analysis may be exhibited in a variety of forms, de-

pending on the variables in which we are particularly interested. In

this way it has very -important advantages.

The result of this dimensional analysis places no restrictions

whatever on the form of the functions by which the results of experi-

ments may be expressed, but the restriction is on the form of the

arguments only. However complicated the function, if it is one

which satisfies the fundamental requirements of the theory as de-

veloped above, it must be possible to rearrange the terms in such a

way that it appears as a function of dimensionless arguments only.

Now in using the theorem we are nearly always interested in ex-

pressing one of the quantities as a function of the others. This is

done by solving the function for the particular dimensionless

product in which the variable in question is located, and then

multiplying that dimensionless product (and of course the other

side of the equation as well) by the reciprocal of the other quanti-

ties which are associated with it in the dimensionless product. The

result is that on the one side of the equation the variable stands

alone, while on the other side is a product of certain powers of some

of the other variables multiplied into an arbitrary function of the

other dimensionless products. This arbitrary function may be tran-

scendental to the worst degree ;
there is absolutely no restriction on

it, but its arguments are dimensionless. This agrees with the result



THE H THEOREM 45

of common experience in regard to the nature of the possible func-

tional relations. We have come to expect that any argument which

appears under the sign of a transcendental function must be a

dimensionless argument. This is usually expressed by saying that it

makes no sense to take the hyperbolic sine, for example, of a time,

but the only thing of which we can take the sinh is a number.5 Now
although the observation is correct which remarks that the argu-
ments of the sinh functions which appear in our analysis are usually

dimensionless, the reason assigned for it is not correct. There is no

reason why we should not take the sinh of the number which meas-

ures a certain interval of time in hours, any more than we should

not take the number which counts the number of apples in a peck.

Both operations are equally intelligible, but the restrictions imposed

by the II theorem are such that we seldom see written the sinh of a

dimensional quantity, and even if we should, it would be possible by
a rearrangement of terms, as already explained, to get rid of the

transcendental function of the dimensional argument by coalescing

two or more such functions into a sinh of a single dimensionless

argument. Thus it is perfectly correct to write the equation of a

falling body in the form

sinh v = sinh gt,

but no one would do it, because this form is more complicated than

that obtained by taking the sinh"1 of both sides. The equation above

might be rewritten

sinh v cosh gt cosh v sinh gt 0,

in which form the rearrangement to get rid of the transcendental

function of a dimensional argument is not so immediate, particu-

larly if one is rusty on his trigonometric formulas. But the last

form is perfectly adapted for numerical computation, in the sense

that it will always give the correct result, and still holds when the

size of the fundamental units is changed.
There is a corollary to these remarks about transcendental func-

tions with respect to the exponents of powers. It is obvious that in

general we cannot have an exponent which has dimensions. If such

appears, it is possible to combine it with others in such a way that

the dimensionality is lost. But there is absolutely no restriction

whatever imposed as to numerical exponents ;
these may be integral,

or fractional, or incommensurable. It is often felt that the dimen-
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sional formula of a quantity should not involve the fundamental

quantities to fractional powers.
6 This is a part of the view that

regards a dimensional formula as an expression of operations on

concrete physical things, and this point of view finds it hard to

assign a meaning to the two-thirds power of a time, for example.
But it seems to me just as hard to assign a physical meaning to a

minus second power of a time, and the possibility of such exponents
is admitted by everyone.

The II theorem as given contains all the elements of the situation.

But in use there is a great deal of flexibility in the choice of the

arguments of the function, as is suggested by the fact that it is

possible to choose the independent solutions of a set of algebraic

equations in a great number of ways. The way in which the inde-

pendent solutions are chosen determines the form of the dimension-

less products, and the best form for these will depend on the par-

ticular problem. We shall in chapter VI treat a number of concrete

examples which will illustrate how the products are to be chosen in

special cases.
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ideas, mass, length, and time, and since the process is syntheti-

cal, building up the complex from the simple, it becomes ex-

pressed in conformity with the principles of Algebra by integral

powers of L, M, and T. . . . Obviously if mass, length, and time
are to be ultimate physical conceptions, we cannot give inter-

pretations to fractional powers of L, M, and T, because we can-

not analyze the corresponding ideas to anything simpler. We
should thus be unable, according to any physical theory, to

give interpretations to formulae involving fractional powers
of the fundamental units.

' '



CHAPTER V

DIMENSIONAL CONSTANTS AND THE NUMBER
OF FUNDAMENTAL UNITS

THE essential result which we have obtained in the II theorem is in

the restriction which it places on the number of arguments of the

arbitrary function. The fewer the arguments, the more restricted

the function, and the greater our information about the answer.

Thus if the problem is such that there are four variables, and three

fundamental kinds of unit, our analysis shows that there is only one

dimensionless product, which we can determine, and that some func-

tion of this product is zero. This is equivalent to saying, in this

special case, that the product itself is some constant, and we have

complete information as to the nature of the solution, except for the

numerical value of the constant. This was the nature of the solution

which we found for the pendulum problem. If it had not been for

the dimensional analysis, any conceivable relation between the four

arguments might have been possible, and we should have had abso-

lutely no information about the solution. Similarly, if there are two

more variables than fundamental kind of quantity, there will be

two dimensionless products. The solution is an arbitrary function

of these two products put equal to zero, which may be solved for one

of the products as a function of the other. This was the case with the

heat transfer problem already treated. It certainly gives more infor-

mation to know that the solution is of this form than merely to

know that there is some function of the five variables which van-

ishes, which was all that we could say before we applied our

analysis.

It is to our advantage, evidently, that the number of arguments
which are to be connected by the functional relation should be as

small as possible. Now the variables which enter the functional rela-

tion to which our analysis has been applied comprise all the varia-

bles which can change in numerical magnitude under the conditions

of the problem. These variables are of two kinds. First are the
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physical variables, which are the measures of certain physical quan-

tities, and which may change in magnitude over the domain to

which our result is to apply. The numbers measuring these physical

quantities may also change when the size of the fundamental units

changes. In the second place, there may be other arguments of the

nature of coefficients in the equation which do not change in numeri-

cal magnitude when the physical system alone changes, but which

change in magnitude when the size of the fundamental measuring
units changes. It is these which we have called dimensional con-

stants. Now in any actual case we are interested only in the physical

problem, and are interested in finding a relation between the physi-

cally variable quantities. The dimensional constants are to be

regarded as an evil, to be tolerated only if they make possible more

information about the physical variables.

"We thus see that the n theorem applies to the aggregate of physi-

cal variables and dimensional constants, whereas we are interested

primarily in the physical variables alone. If the number of dimen-

sional constants is so great that the number of arguments of the

arbitrary function allowed by the II theorem is equal to or greater

than the number of physical variables alone, then we are no better

off after applying our n theorem than before. Now we have already

seen that in the worst possible case the number of dimensional con-

stants cannot exceed the number of physical variables, for any

empirical equation can be made complete by the introduction of a

dimensional constant with each physical variable. Furthermore, it

is almost always true that the number of physical variables is equal

to or greater than the number of fundamental units. Hence, if the

number of dimensional constants is equal the number of physical

variables, the number of dimensionless products is greater than or

at most equal to the number of physical variables. In the general

case, therefore, the II theorem gives no new information. Hence it

is of the utmost importance to keep down to the minimum the num-

ber of dimensional constants used in the equation.

When, therefore, shall we expect dimensional constants, and in

any particular problem how shall we find what they are, and what

are their dimensional formulas? The answer to this question is

closely related to the answer to the question of how we shall choose

the list of physical quantities between which we are to search for a

relation. We have seen that it does not do to merely ask ourselves
' l

Does the result depend on this or that physical quantity ?
' '

for we
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have seen in one problem that although the result certainly does

"depend" on the action of the atomic forces, yet we do not have

to consider the atomic forces in our analysis, and they do not enter

the functional relation.

To answer the question of what variables to include demands a

background of a great deal of physical experience. If we are to treat

a certain problem by the methods of mechanics we must have enough

background to be assured that the problem is a problem in mechan-

ics, and involves essentially no elements that are not treatable by the

ordinary equations of mechanics. We must know that certain

aspects of the problem can be neglected, and that certain others

alone are essential as far as certain features of behavior go. No one

would say that in any problem of mechanics the atomic forces are

not essential, but our experience shows that they combine into

certain complexes, which may be sufficiently characterized by an

analysis which does not go down to the ultimate component parts,

and that the results of our analysis, which disregards many even

essential aspects of the situation, have validity under certain condi-

tions whose restrictions are not irksome. The experience involved in

judgments of this sort reaches so far back that we know almost by
instinct whether a problem is suitable for mechanical treatment or

not. And if the problem is capable of mechanical treatment, we

know, by the very definition of what we mean by a mechanical sys-

tem, what the equations are which the motion of the component

parts of the system conform to, and what the form of the equations

is. In the same way, we know by instinct whether a system is a

thermodynamic system, or an electrical system, or a chemical sys-

tem, and in each case, because we know what we mean when we say
that a phenomenon is of such or such a nature, we know what are

the laws which govern the variations of the system, and the ele-

ments which must be considered in formulating the relations be-

tween the parts. But a very wide background of experience, extend-

ing over many generations, was necessary before we could say that

this particular group of phenomena is mechanical or electrical, or,

in general, that the phenomenon is physical.

Now my point of view is essentially that precisely the same ex-

perience which is demanded to enable us to say whether a system
is mechanical or electrical is the experience which is demanded in

order to enable us to make a dimensional analysis. This experience
will in the first place inform us what physical variables to include
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in our list, and will in the second place tell us what dimensional

constants are demanded in any particular problem.

Let us for the present forget what we know of dimensional analysis

and imagine ourselves approaching a new problem. In the first place

we decide in the light of the experience of all the ages what the

nature of the problem is. Suppose that we decide that it is mechani-

cal. Then we know that the motion of the system is governed by the

laws of mechanics, and we know what these laws are. We write down
certain equations of motion of the system. We are careful to include

all the equations of motion, so that the system of equations by which

we have described the relations between the parts of the system has

a unique solution. Then we are convinced, because of our past

experience, that we have essentially represented all the elements of

the situation, that our equations correspond to the reality at least as

far as certain aspects of the phenomenon go, and the solution of the

equations will correctly represent the behavior of the system which

we have thus analyzed. We are not disappointed. The fact that our

predictions turn out to be verified means merely that we have

become masters of a certain group of natural phenomena.
Now the astute observer (Fourier

1 was the first astute observer)

notices that the equations by which the relation of the component

parts of the system is analyzed are expressed in such a general form
that they remain true when the size of the fundamental units is

changed. For instance, the equation stating that the force acting on

a particular part of our mechanical system is equal to the mass of

that part times its acceleration remains true however the size of the

fundamental units is changed, because in every system of units

which we use for mechanical purposes, the unit of force is defined

so that force has this relation to mass and acceleration. Every one

of the fundamental equations of motion is in the same way a com-

plete equation. The final solution is obtained from the equations of

motion by a purely mathematical process, which has no relation to

the size of the fundamental units. It follows, therefore, in general,

that the final result will also be complete, in the sense that the equa-
tion expressing the final result is a complete equation.

Dimensional analysis may, therefore, be applied to the results

which we obtain by solving the equations of motion. (We use equa-
tions of motion in a general sense, applying to thermodynamic and
electrical as well as mechanical systems. ) Now the arguments of the

function which we finally obtain by solving the equations of motion
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can obviously be only those quantities which we put into the original

equations of motion, for the mathematical operations can introduce

no new arguments.

In particular, the dimensional constants which enter the final relation

are those, and those only, which we had to use in writing down the equa-
tions of motion. This is the entire essence of the question of dimensional

constants.

With regard to the dimensional formulas of dimensional con-

stants, we may merely appeal to experience with the observation

that all such constants are of the form of products of powers of the

fundamental quantities. But it is evident on reflection, that any law

of nature can be expressed in a form in which the dimensional

formulas of the constants are of this type, by the device, already

adopted, of introducing dimensional constants as factors with the

measured quantities in such a way as to make the equation com-

plete. We will hereafter assume that the equations of motion (which

are merely expressions of the laws of nature governing phenomena)
are thrown into such a form that the dimensional constants are of

this type ;
this is seen to involve no real restriction.

It appears, therefore, that dimensional analysis is essentially of

the nature of an analysis of an analysis. We must know enough
about the situation to know what the general nature of the problem

is, and what the elements are which would be introduced in writing

down the equations determining the motion (in the general sense)

of the system. Then, knowing the nature of the elements, we can

obtain certain information about the necessary properties of any
relations which can be deduced by mathematical manipulations
with the elements. In so far as our knowledge of the underlying

laws of nature is adequate we may have confidence in the result,

but the result can have no validity not pertaining to the equations

of motion, and is in no way different from all our other knowledge.

The result is approximate, as the laws of motion are approximate, a

restriction which is imposed by the very nature of knowledge itself.

The man applying dimensional analysis is not to ask himself
' ' On

what quantities does the result depend?" for this question gets

nowhere, and is not pertinent. Instead we are to imagine ourselves

as writing out the equations of motion at least in sufficient detail to

be able to enumerate the elements which enter them. It is not neces-

sary to actually write down the equations, still less to solve them.
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Dimensional analysis then gives certain information about the

necessary character of the results. It is here of course that the

advantage of the method lies, for the results are applicable to sys-

tems so complicated that it would not be possible to write the equa-

tions of motion in detail.

It is to be especially noticed that the results of dimensional

analysis cannot be applied to any system whose fundamental laws

have not yet been formulated in a form independent of the size of

the fundamental units. For instance, dimensional analysis would

certainly not apply to most of the results of biological measure-

ments, although such results may perfectly well have entire physical

validity as descriptions of the phenomena. It would seem that at

present biological phenomena can be described in complete equa-

tions only with the aid of as many dimensional constants as there

are physical variables. In this case, we have seen, dimensional analy-

sis has no information to give. In a certain sense, the mastery of a

certain group of natural phenomena and their formulation into

laws may be said to be coextensive with the discovery of a restricted

group of dimensional constants adequate to coordinate all the

phenomena.
Let us apply this view of the nature of dimensional constants to

the problem which we have already considered of the electro-

magnetic mass of a spherical distribution of electricity. This is evi-

dently a problem in electrodynamics, and must be solved by the use

of the field equations. These field equations consist of certain mathe-

matical operators operating on certain combinations of the electric

and magnetic forces and the velocity of light. In this particular

problem we want to solve the equations in such a form as to get the

electromagnetic mass; this is the integral throughout space of a

constant times the energy density, which in turn is given by the

distribution of the forces, which are determined by the distribution

of the charge. Hence if there is a relation of the form which we

suspect, the forces will eliminate from the final result. There is,

however, no reason to think that the characteristic constant "c"
of the equations will also eliminate from the result, and we must

therefore seek for a relation between the total charge, the mass, the

radius, and the constant of the field equations, which is the velocity

of light. This relation we have already found, and checked against

the results of a detailed solution of the field equations applied to

this particular problem.
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We have seen that dimensional constants are going to enter the

final result only in so far as they enter the equations of motion. Now
a dimensional constant in an equation of motion is an expression of

a physical relation which is so universal as to be characteristic of all

the phenomena embraced in the particular group which we are

considering. Such a universal physical relation may be treated in

two ways. We may leave the dimensional constant in the equations

as an explicit statement of the relation, as i^ done in the field equa-

tions of electrodynamics, or we may define our fundamental units

with this relation in view, thus obtaining a system of units in which

the dimensional constant has disappeared but in which the number
of units which may be regarded as fundamental has been restricted

in such a way that all units belonging to the system automatically

bear the experimental relation to each other. The system of units so

obtained is of value only in treating that group of phenomena to

which the law in question applies. Thus it is a result of experience

that the mass times the acceleration of a body is proportional to the

force acting upon it. In this statement of the experimental facts

there is no restriction whatever upon the units of mass, or length,

or time, or force. The factor of proportionality will change in

numerical magnitude whenever any one of the four fundamental

units is changed in size. But now, instead of being bothered by a

continually changing factor of proportionality, we may arbitrarily

say that this factor shall be unity in all systems which we will con-

sider, and we will bring this result about by defining the unit of

force in our new system to be such that the force acting on a body
is equal to the mass times the acceleration. We have in this way
obtained a system of units adapted to dealing with all those physical

systems in which the laws of motion involve a statement of the

physical relation between force, mass, and acceleration, but if the

physical system should be such that this relation is not involved

in the motion of the system, then we would be unduly restricting

ourselves by using the mechanical system of units.

These considerations^ as to the possible systems of units answer

the question previously raised, as in the fourth problem of the

introduction, for example, as to the number of kinds of .units which

we shall take as fundamental. The answer depends entirely upon the

particular problem, and will involve the physical relations which

are necessary to a complete expression of the motion of the parts.

In any ordinary problem of dynamics, for example, the relation
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between force and mass and acceleration is essentially involved in

the equations of motion. This relation may be brought into the

equations either by the use of four fundamental kinds of unit,

force, mass, length, and time, with the corresponding dimensional

constant of proportionality, or by using the ordinary mechanical

units of mass, length, and time, in which force is defined so that the

experimental relationship is always satisfied, and the dimensional

constant has disappeared. In either case the results of the dimen-

sional analysis are the same. For the difference between the number

of fundamental units and the number of variables, which deter-

mines the number of arguments of the unknown function, is the

same in either case, because when the number of units is augmented

by one by including the force, the number of variables is also aug-

mented by one by including the dimensional constant, and the differ-

ence remains constant. If, however, the problem were such that the

experimental relation between force, mass, and acceleration is not

involved in the equations of motion of the system, then the ordinary

mechanical units would be inappropriate, because we would obtain

less information when using them. For we could in this case use

four fundamental units without introducing a corresponding dimen-

sional constant into the list of variables, so that the difference be-

tween the number of variables and the units would be less by one

when using four than when using three fundamental units, and the

arguments of the function would be fewer in number, which is de-

sirable. We shall meet an example illustrating this point later.
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CflAPTER VI

EXAMPLES ILLUSTRATIVE OF DIMENSIONAL
ANALYSIS

LET us in the first place recapitulate the results of the preceding

chapter. Before undertaking a dimensional analysis we are to im-

agine ourselves as making an analysis to the extent of deciding the

nature of the problem, and enumerating the physical variables which

would enter the equations of motion (in the general sense) and

also the dimensional coefficients required in writing down the equa-

tions of motion. The dimensions of all these variables are then to be

written in terms of the fundamental units. These fundamental units

are to be chosen for each particular problem in such a way that

their number is as large as possible without involving the introduc-

tion of compensating dimensional constants into the equations of

motion. The dimensionless products of the variables are then to be

formed in accordance with the II theorem, choosing the products in

such a way from the great variety possible that the variables in

which we are particularly interested may stand conspicuously by
themselves. Having formed the products, the II theorem gives im-

mediately the functional relation.

In the following illustrative examples we have particularly to

consider the proper number of fundamental units, and the most

convenient way of choosing the dimensionless products. The matter

of dimensional constants we regard as clear.

As the first example we will take the first treated by Lord Eay-

leigh in Nature* Consider a wave advancing on deep water under

the action of gravity. This is evidently, a problem in hydrodynamics,

which is merely mechanics applied to liquids. The equations of

mechanics will therefore apply. Now the liquid when displaced from

equilibrium is restored by the force of gravity. This will involve the

density of the liquid and the intensity of gravity. Evidently these

quantities will enter the equations of motion. No other properties

of the liquid, such as the compressibility, will enter, because we
know from a discussion of the equations of hydrodynamics that such
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properties are unimportant for phenomena of this scale of magni-

tude. Physically, of course, the compressibility affects the result

to a certain extent, so that the result of our analysis will not be

exact, but will be a valid approximation only to the extent that the

equations of hydrodynamics are valid approximations. There are

no dimensional constants entering the equations of hydrodynamics,

provided that we use ordinary mechanical units, in which mass,

length, and time are fundamental, for the laws of motion have

entered
this^ system

of units through the definition of force. The

equations, of course, are equations between the displacements and

the other elements. Now it is conceivable that we might eliminate

the various displacements from the equations, and come out at the

end with a relation between the velocity of propagation, the density,

and the intensity of gravity only, analogously to the pendulum

problem.

Let us try this. Write down the variables and their dimensional

formulas, as before.

Name of Quantity. Symbol. Dimensional Formula.*

Velocity of wave, v LT"1

Density of liquid, d ML~3

Accleration of gravity, g LT~2

We now apply the n theorem. We have three variables, and three

fundamental kinds of unit. The difference between these numbers

is zero, and therefore, according to the theorem, there are zero

dimensionless products. That is, we have made some mistake^
and

no relation exists, unless this should be one of those exceptional

cases in which a product may be formed of fewer than the normal

number of factors. But an examination shows that this is no excep-

tion, and there is in fact no dimensionless product. This shows that

the suggested elimination was not possible, but that some other ele-

ments or combination of elements must enter the final result.. Of
course the detailed analysis wilFgive as the final result a detailed

description of the motion of the water, from which we must pick out

the wave motion and find its velocity. That is, along with the veloc-

ity in the final result there will be something characteristic of the

particular wave. The velocity of all the waves need not be the same,

but may depend on the wave length, for example. Physically, of

course, we knew this in the beginning, and we were stupid only for
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purposes of instruction. Our experience with problems of this

nature would have led us to search for a relation between the varia-

bles which we put into the analysis, the velocity, and the wave

length. Let us introduce, therefore, into our list of quantities the

wave length.

Wave length A L

We have now four variables, and the dimensional formulas are

expressed in terms of three fundamental kinds of unit, so that the

II theorem leads us to expect the existence of one dimensionless

product, and the result will be that the dimensionless product is

equal to a constant.

The proof of the n theorem also showed that one exponent in a

dimensionless product can be assigned arbitrarily. Since we are

particularly interested in v, let us choose its exponent as unity, and

write the dimensionless product in the form v d- tt

g-0 A-* . Putting

this equal to a constant and solving for v, gives for the result

v = Const da
g^ \y.

The dimensions of the factors on the right-hand side must

together be the same as that of the velocity, which stands alone on

the left-hand side. We solve for the unknown exponents of the fac-

tors of the right-hand side. Substitute the dimensional formulas for

the variables

LT- 1 = (ML-
8

)'

Now write down in succession the condition that the exponents of

M, of L, and of T be the same on the two sides of the equation. This

gives

a = condition on M
3a + /? + y= 1 condition on L

2 (3
= 1 condition on T.

Whence
a =

7 72 J j

and the final result is of the form

v == Const

w-
f
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The velocity of a gravity wave on deep water (the reason the

depth did not enter the final result was because we postulated that

the water was to be deep) is therefore proportional to the square

root of the wave length and the intensity of gravity, or is propor-

tional to the velocity acquired by a body falling freely under

gravity through a distance equal to the wave length.

It is to be noticed that the density of the liquid has disappeared

from the final result. This might have been anticipated; if the

density is doubled the gravitational force is also doubled on every

element, and the accelerations and therefore all the velocities are

unaltered, because the doubled force is compensated by a doubled

mass of every element.

Since the density disappears from the final result we have here

a dimensionless product of v, 1, and g only. This is, therefore, a

dimensionless product of three variables, expressed in three funda-

mental units. This is in general not possible, but demands some

special relation between the dimensional formulas of the variables.

We can see in a moment by writing out the product in terms of

unknown exponents, and then writing the algebraic equations which

the exponents must satisfy, that the condition that a dimensionlegs

product exist in a number ofjterms just equal to the number of

fundamental units ia_that the detenfl1TlftTit of the exponents in the

mrnensionarlbrnmla^of the factors vanish. This is obviously not

restricted to the case of three fundamental units, but applies to any
number. Conversely the condition that a particular element shall

enter as a factor into a dimensionless product with a number of

other factors equal in number to the fundamental units, is that the

determinant of the exponents of the other factors shall not be zero
;

otherwise the other factors by themselves form a dimensionless

product into which the factor in which we are interested does not

enter.

Consider now a second problem. An elastic pendulum is made

by attaching to a weightless spring of elastic constant k a box of

volume V which is filled with a liquid of density d. The mass of the

liquid in the box is acted upon by gravity, and we are required to

find an expression for the time of oscillation. As before we make
a list of the quantities and their dimensions.
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Name of Quantity. Symbol. Dimensional Formula.

Elastic constant (force per unit

displacement), k- MT~2

Time of oscillation, t - T
Volume of box, v L3

Density of liquid, d ML~3

Acceleration of gravity, g LT~2

The problem is obviously one in ordinary mechanics, so that we
are justified in using the mechanical system of units, and there will

be no dimensional constant. The variables which we have listed

above are, therefore, the only ones, and are those in terms of which

the problem is formulated. Here there are five quantities and three

fundamental kinds of unit. There are therefore two dimensionless

products. In the analysis of the last chapter we saw that in finding

the dimensionless products we had to solve a system of algebraic

equations. Certain of the solutions could be assigned at pleasure,

and the others determined in terms of them. In this particular

problem we are interested especially in t, and let us say k. Then let

us choose the exponents of t and k in the dimensionless products

as those which are to be assigned at pleasure and in terms of which

the others are to be computed. Now the algebraic theorem showed

that there were two linearly independent sets of exponents which

we might assign to t and k, and that it is possible to choose these

two sets in an infinite number of ways. We will try to select the two

simplest. For the present purpose we will accomplish this by assign-

ing the value 1 to the exponent of t and to that of k for the one

set, and to the exponent of t and 1 to the exponent of k for the

other set. This is certainly a simple couple of pairs, and has the

effect of making both t and k appear in only one dimensionless

product. "We therefore have to find the two dimensionless products

t vtti d^ 1
g^i ?

k vaa d^ 2 g? 2
.

We have now two sets of algebraic equations for the two sets of

unknown exponents a1? ft, yx and a2 , ft, y2 . These equations are

3a2 -3ft+y2 +
Oa2 + 0ft-y2 -2
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The solutions are

Hence the dimensionless products are

and(

and the solution is

- -,.
where the function f is undetermined.

Now the result so obtained is undoubtedly correct as far as it

goes, but an examination will show that we can do better, and

obtain a form in which there is no undetermined function. This

improvement can be effected by increasing the number of funda-

mental units. We were correct in using the ordinary mechanical

units, for the equations of motion involve the dynamical relation

between force, mass, and acceleration. The change is to be made in

a direction at first not obvious because we are so accustomed to using

the units written down. It is evident on reflection, however, that in

the equations of motion governing the system no use is made of the

fact that the numerical measure of the volume of the box is equal

to the cube of the length of one of its linear dimensions. It is quite

possible to measure volumes physically in terms of a particular

volume chosen as unity by cutting up the larger volume into smaller

volumes congruent with the unit, and counting the number of

times that the unit is contained in the larger volume. It may then

be proved that the number so obtained is proportional to the cube

of the number measuring one of the linear dimensions. In fact, this

is the method of proof originally adopted by Euclid in dealing with

both areas and volumes. After the geometrical fact has been proved,

it becomes natural to define the unit volume as that volume which

is equal to a cube whose sides are unity, but this definition and

restriction are of value only in those problems in which the relation

between volume and length enter essentially into the result. Such

is not the case here, because the volume of the box is of importance

only as determining, in conjunction with the density of the liquid,

the mass filling the box. We might perfectly well measure length
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for this problem in inches, and the volume in quarts, provided, of.

course, that we measure density as mass per quart.

Let us then attempt the problem again, now taking volume as

an independent unit of its own kind. Then we shall have :

Name of Quantity. Symbol. Dimensional Formula.

Elastic constant, k / ^ MT~2

Time of oscillation, t T
Volume of box, v

>/
^

Density of liquid, d
' $ MV"1

Acceleration of gravity, g & .. LT~2

We have now five variables, but four fundamental kinds of quan-

tity, so that there is only one dimensionless product. We are par-

ticularly interested in t, so we choose the exponent of t equal to

unity, and are required to find the other exponents so that

t ka v d^ g
6

is dimensionless.

This problem is so simple that we can solve for the unknowns by
inspection, or if we prefer, write out the equations, which are :

8 =
-2a-28 + lrz:0

-7 =
The solution of this set of equations is

=%, j
s = -&y = -%,8 = o.

The dimensionless product is

tk*v-*d-*,
and the solution is

t = Const /?
The information embodied in this solution is evidently much

greater than in the more noncommittal one obtained with three

units. It is seen from the new solution, for example, that the time

of oscillation does not depend on the intensity of gravity. Physically,

of course, this means that gravity is effective only in changing the

mean position of equilibrium; as gravity increases the weight is

pulled down and oscillates about a position nearer the center of
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attraction, but the period of oscillation is not changed thereby. It

was not at all obvious or necessary from the first form of the solu-

tion that the time would be independent of gravity, but that the

previous solution is not inconsistent with this one is seen by putting

the f of the previous solution equal to a constant times the inverse

square root of the argument, when the two solutions become

identical.

Instead of increasing the number of fundamental units from

three to four, we might have obtained the same result by observing

that the equations of motion are concerned only with the total mass

on the end of the string, and hence the volume and the density can

affect the result only in so far as they enter through their product,

the mass. According to this method of treatment we would have put

v and d together as one quantity, so that we would have been con-

cerned with only four quantities and three fundamental kinds of

unit. The result would have been the same as by the method which

we adopted. In fact, it will often be found possible by using special

knowledge of the problem to obtain in this way more detailed infor-

mation than would have been possible by the general analysis.

If we use the mass as one of the variables, the result assumes the

form t = Const Vf ,
and again we have a dimensionless product of

fewer than the normal number of terms.

Now let us consider a problem illustrating how it is that the

result is unaffected by increasing the number of units if at the same

time the number of dimensional constants is increased. We .take the

same problem as above, except that we now give only the mass on

the end of the spring, and do not attempt to analyze the mass into

volume times density. The variables will be mass (m), time of oscil-

lation (t), and stiffness of spring (k). "We can omit the intensity of

gravity, because we have already seen it to be without effect. In

discussing this problem we propose to use five fundamental kinds of

unit, which we will choose as mass, length, time, as usual, and in

addition force, and velocity. This problem is evidently one in

mechanics involving in the statement of the relations between the

parts the experimental fact that force is proportional to mass times

accleration. Hence in formulating the equations of motion we will

have to introduce this proportionality factor, which will appear in

the analysis as a new dimensional constant. This factor is to connect

force, mass, and acceleration. But now acceleration must be rede-
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fined if we are using velocity as a unit of its own kind. Acceleration

will now be denned as time rate of change of velocity, and will have

the dimensions VT 1
. The equation of motion thus written will

express a relation between the force and the velocity and the time.

But the force is connected with the displacement through the

elastic constant, so that to solve the equations a relation is needed

between displacement, velocity, and time. The experimental fact, of

course, is that velocity is proportional to the quotient of distance

by time. The factor of proportionality will appear in the final result

as a dimensional constant. We now have our list of quantities com-

plete. They compose three physical variables, and two dimensional

constants.

Name of Quantity. Symbol. Dimensional Formula.

Time of oscillation, t T
Mass at end of spring, m M
Stiffness of spring, k FL"1

The force dimensional constant, f FM"1 TV"1

The velocity dimensional con-

stant, v L-1 TV

Here F is the dimensional symbol of force measured in units of

force, and V the dimensional symbol of velocity. The dimensional

formulas were obtained by the regular methods, noting only that

the stiffness of the spring is defined as the force exerted by the

spring per unit displacement of the end.

We have now to find the dimensionless products involving these

five variables. We note in the first place that there are five variables,

and five fundamental kinds of quantity, so that in general there

would be no dimensionless product. But it may be seen on writing

it out that the determinant of the exponents in the dimensional

formulas vanishes, so that in this special case there is a dimension-

less product with fewer than the normal number of factors. Of

course we knew that this must be the case from our previous discus-

sion. Now, as before, we select t as the quantity in which we are

particularly interested, write the dimensionless product in the form

and write down the condition that the product is dimensionless. This

gives
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a 7 = condition on M
ft 8 = condition on L

7 + 8 + 1 = condition on T

(3 + y = condition on F
y + 8 = condition on V.

The solution is

a = -y2 , p = y2 , y = ~y2 ,
< = -y2 .

The dimensionless product is

tm-i k*f-* v-*,

and the final solution

t = Const V^-'

This is exactly the same as the solution already obtained, on put-

ting the dimensional constants f and v equal to unity, which of

course was their value in the ordinary mechanical system of units.

Although this example gives no new results, it is instructive in

showing that any system of fundamental units whatever is allow-

able, provided only that the dimensional constants required by the

special problem are also introduced.

We now consider a problem in which it is an advantage to treat

force as a unit of its own kind. This is the problem of Stokes of a

small sphere falling under gravity in a viscous liquid. The sphere

is so small that the motion is everywhere slow, so that there is

nowhere turbulence in the fluid. The elements with which we have

to deal in this problem are the velocity of fall; the density of the

sphere, the diameter of the sphere, the density of the liquid, the

viscosity of the liquid, and the intensity of gravity. The problem is

evidently one in mechanics, so that if we use the ordinary mechani-

cal units there will be no dimensional constants to introduce. But

we notice that the problem is of a very special kind for a mechanical

problem. The motion is slow, and the velocity is steady, the forces

acting on the sphere and the liquid being everywhere held in equi-

librium by the forces called out by the viscosity of the liquid.

That is, although this is a problem involving motion, it is a problem

involving unaccelerated motion, and the forces are in equilibrium

everywhere. The problem is essentially, therefore, one in statics, and

in solving the problem we need to make no use of the fact that in

those cases where there happens to be an acceleration the force is
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proportional to mass times acceleration. In this problem, therefore,

we treat force as its own kind of quantity, and do not have to intro-

duce a compensating dimensional constant. Our analysis of the

problem is now as follows :

Name of Quantity. Symbol. Dimensional Formula.

Velocity of fall, v LT-1

Diameter of sphere, D L

Density of sphere, dt
ML~3

Density of liquid, d2 ML~3

Viscosity of liquid, /*
FL~2T

Intensity of gravity, g FM"1

The dimensional formula of viscosity is obtained directly from

its definition as force per unit area per unit velocity gradient. The

intensity of gravity is taken with the dimensions shown, because

obviously the equations of motion will not mention the accelerational

aspect of gravitational action, but only the intensity of the force

exerted by gravity upon unit mass.

We now have six variables, and four fundamental kinds of unit.

There are, therefore, two dimensionless products. One of them is

evident on inspection, and is d2/d . Now of the remaining quantities

we are especially interested in v. We need combine this with only

four other quantities to obtain a dimensionless product. We choose

D, di, JM, and g, and seek a dimensionless product of the form

The exponents are at once found to be

=-2,/T:= -1/8== -1,^= 1

Hence the dimensionless products are

v D-2 dr1
n g-

1 and

and the final solution is

The function f is arbitrary, so that we cannot tell how the result

depends on the densities of the sphere and the liquid, but we do see

that the velocity of fall varies as the square of the diameter of the
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sphere, and the intensity of gravity, and inversely as the viscosity

of the fluid.

This problem has of course long been solved by the methods of

hydrodynamics, and the solution is

See, for example, Millikan, Phys. Rev., 2, 110, 1913. The exact solu-

tion is obtained from the more general one above by giving

)
as the special value of the function.

If we had solved this problem with the ordinary mechanical units,

in which force is defined as mass times acceleration, we should have

had 'three instead of two dimensionless products, and the final result

would have been of the form

d.D

In this form we evidently can say nothing about the effect on the

velocity of any of the elements taken by themselves, since they all

occur under the arbitrary functional symbol.

There are many problems in which some specific information

about the nature of the physical system enables the information

given by dimensional analysis to be supplemented so that a more

restricted form of the solution can be obtained than would be pos-

sible by dimensional analysis alone. There is, of course, no law

against combining dimensional analysis with any information at our

command.

Let us take as a simple example the discussion of the problem of

the bending of a beam. This is a problem in elasticity. Let us en-

deavor to find how the stiffness of the beam depends on the dimen-

sions of the beam, and any other quantities that may be involved.

Now the equations of elasticity are equations of ordinary mechanics.

The mechanical system of three fundamental units is indicated.

The equations of elasticity from which the solution is to be obtained

will involve the elastic constants of the material. If the material is

isotropic, there will be two elastic constants, which may be chosen as

Young's modulus, and the shear modulus. Out analysis may now
run as follows:
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Name of Quantity. Symbol. Dimensional Formula.

Stiffness (Force/deflection), S MT~2

Length, 1 L

Breadth, b L

Depth, d L

Young's modulus, E ML"1 T~2

Shear modulus, ju ML-1 T~2

There are six variables, and three fundamental kinds of unit.

Hence according to the general rule there should be three dimen-

sionless products. Three such products can obviously be written

down by inspection, and are

b/1, d/1, and /x/E.

Now none of these dimensionless products contains the quantity S

in which we are particularly interested, and it is evident that there

is something peculiar about this problem. It will in fact be found,

on going back to the system of algebraic equations on which the

solution depends, and writing down the matrix of the coefficients

obtained from the exponents in the dimensional formulas, that each

of the three rowed determinants formed out of the matrix is zero.

This is evident on inspection of the matrix.100011
1 1 l_l_l

-2 0-2-2
This means that in this particular case there are more dimensionless

products than are given by the general rule. That such is the case

should have been evident beforehand. In the first place, an inspec-

tion of the dimensional formulas shows that M and T always enter

in the combination MT~2
,
so that this combination together might

have been treated as a fundamental unit itself, so that there would

have been only two fundamental units instead of three, and four

instead of three dimensionless products. In the second place, this is

a problem in statics, in which mass and time do not enter into the

results. The dimensions of all the quantities could have been given

in terms of force and length as the fundamental units. This remark

is the physical equivalent of the analytical observation that M and

T always occur in the combination MT~2
(force is MT~2

multiplied

byL).
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With the knowledge that there is still another dimensionless

product, we can see by inspection that it is

S/El,

so that the final solution is

b d /A

7 ? i;
= Blf

This solution gives no information about the variation of stiffness

with the dimensions of the beam. Now it is obvious from elementary
considerations of elasticity, that for slender beams, the stiffness

must be approximately proportional to the breadth, other things

being equal, for the boundary conditions are such that the solution

for a beam of twice the breadth may be obtained approximately by

simply placing beside each other two of the original beams. Hence

f must be of such a form that If
(-,-, )

reduces to b <

(
-,

)

\1 1 E/ \1 B/

and the value of f must obviously be - <[-, ). The restricted
1 \l E/

solution is therefore

I'E

The solution now shows that a beam of double the length can be

kept of the same stiffness by doubling the depth. The detailed solu-

tion of elasticity shows that the ratio of d to 1 enters as the cube, as a

factor of proportionality, so that the stiffness is proportional directly

to the cube of the depth, inversely to the cube of the length, directly

as the breadth, and to some unknown function of the elastic

constants.

This method of supplementing the results of dimensional analysis

by other information will often be found of value. There are numer-

ous examples in Lord Rayleigh's treatments. Rayleigh does not

always separate the analysis into a dimensional and another part,

but states that a result can be proved by dimensional analysis,

although it may require supplementing in some such way as above.

A good example will be found in his treatment of the scattering of

light by the sky.
2 The result that the scattering varies inversely as

the fourth power of the wave length of the incident light is obtained

by using in addition to dimensional knowledge the fact that "From
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what we know of the dynamics of the situation i (ratio of ampli-
tude of incident and scattered light) varies directly as T (volume

'

of scattering particle) and inversely as r (distance of point of

observation from scattering particle)."

Thus far we have considered only problems in mechanics, but of

course the method is not restricted to such problems, but can be

applied to any system whose laws can be formulated in a form

independent of the size of the fundamental units of measurement.

Let us consider, for example, a problem from the kinetic theory
of gases, and find the pressure exerted by a perfect gas. The atoms

of the gas in kinetic theory are considered as perfect spheres, com-

pletely elastic, and of negligible dimensions compared with their

distance apart. The only constant with dimensions required in

determining the behavior of each atom is therefore its mass. The

behavior of the aggregate of atoms is also evidently characterized

by the density of the gas or the number of atoms per unit volume.

The problem is evidently one of mechanics, and the pressure exerted

by the gas is to be found by computing the change of momentum

per unit time and per unit area of the atoms striking the walls of

the enclosure. The mechanical system of units is therefore indicated.

But in addition to the ordinary mechanical features there is the

element of temperature to be considered. How does temperature

enter in writing down the equations of motion of the system?

Obviously through the gas constant, which gives the average kinetic

energy of each atom as a function of the temperature. Our analysis

of the problem therefore runs as follows :

Name of Quantity. Symbol. Dimensional Formula.

Pressure exerted by gas, p ML"1 T~2

Mass of the atom, m M
Number of atoms per unit of

volume, N L~8

Absolute temperature, 6

Gas constant per atom, k ML2 T~2 0"1

"We have here five variables, and four kinds of units. There is,

therefore, one dimensionless product. Since p is the quantity in

which we are interested, we choose the exponent of this as unity.

We have to find

p m
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The work of solution is as before. The values of the exponents are

a = 0, =-1, y = -l, 8 = -l.

The dimensionless product is

p N-1 0-1 k-1
,

and the final solution is

p = Const N k 0.

That is, the pressure is proportional to the gas constant, to the

density of the gas, and to the absolute temperature, and does not

depend on the mass of the individual atoms. The formula for pres-

sure is, of course, one of the first obtained in any discussion of

kinetic theory, and differs from the above only in that the numerical

value of the constant of proportionality is determined.

In this problem, or in other problems of the same type, we could,

if we preferred, eliminate temperature as an independent kind of

variable and define it as equal to the energy of the atom. This

amounts merely to changing the size of the degree, but does not

change the ratio of any two temperatures, and is the sort of change
of unit which is required according to the fundamental assumptions.

If we define temperature in this way, the gas constant is of course

to be put equal to unity. We would now have three fundamental

units, and four variables. There is of course again only one dimen-

sionless product, and the same result would be obtained as before.

Let us go through the work
;
it is instructive.

Name of Quantity. Symbol. Dimensional Formula.

Pressure exerted by gas, p ML"1 T~2

Mass of atom, m M
Number of atoms per unit vol-

ume, N L~3

Absolute temperature, ML2 T~2

We now have to find our dimensionless product in the form

p ma N Ov.

The exponents are at once found to be

a= 0,=-]L, r= --l,

and the solution of the problem is

p Const N 6.
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This solution is like the one obtained previously except for the

presence of the gas constant, but since the gas constant in the new

system of units is unity, the two solutions are identical, as they

should be.

This procedure can obviously be followed in any problem whose

solution involves the gas constant. Temperature may be either

chosen as an independent unit, in which case the gas constant

appears explicitly as a variable, or temperature may be so denned

that the gas constant is always unity, and temperature has the

dimensions of energy. The same procedure is not incorrect in prob-

lems not involving the gas constant in the solution. But if in this

class of problem temperature is denned as equal to the kinetic

energy of an atom (or more generally equal to the energy of a

degree of freedom) and the gas constant is made equal to unity,

the fundamental units are restricted with no compensating advan-

tage, so that although the results are correct as far as temperature
is proportional to the energy of a degree of freedom, they will not

give so much information as might have been obtained by leaving

the units less restricted.

It is obvious that these remarks apply immediately to the heat

transfer problem of Eayleigh treated in the introductory chapter.

Many persons feel an intuitive uncertainty with regard to the

dimensions to be assigned to temperature. This is perhaps because

of the feeling that a dimensional formula is a statement of the

physical nature of the quantity as contained in the definition. Now
the absolute temperature, as we have used it above, is the thermo-

dynamic absolute temperature, defined with relation to the second

law of thermodynamics. It is difficult to see how such a complex
of physical operations as is involved in the use of the second law

(such as Kelvin first gave in his definition of absolute temperature)

can be reproduced in a simple dimensional formula. It is, however,

evident that measurements of energy, for example, are involved in

an application of the second law, so that perhaps in some way the

ordinary mechanical units ought to be involved in the dimensional

formula. But we have seen that the dimensional formula is con-

cerned only with an exceedingly restricted aspect of the way in

which the various physical operations enter the definition, namely
with the way in which the numerical measure of a quantity changes

when the fundamental units change in magnitude. Now a little

reflection shows that any such procedure as that of Lord Kelvin
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applied to the definition of absolute temperature through the use

of the second law imposes on the number measuring a given con-

crete temperature no restriction whatever in terms of the units in

which heat or energy, for example, are measured. The size of a

degree of thermodynamic temperature may be fixed entirely arbi-

trarily so that there are any number of degrees between the freez-

ing and the boiling points of water, for example, absolutely without

reference to the size of any other unit. We are concerned in the

dimensional formula with the definition in terms of the second law

only in so far as this definition satisfies the principle of the absolute

significance of relative magnitude, that is, the principle that the

ratio of the measures of two concrete examples shall be independent
of the size of the units. Now it is evident that the thermodynamic
definition of absolute temperature does leave the ratio of any two

concrete temperatures independent of the size of the units. The

dimensional formula of temperature, therefore, need contain no

other element* and temperature may be treated as having its own
dimensions.

There is no necessity in using the absolute thermodynamic tem-

perature. We might, for instance, define the number of degrees in a

given temperature interval as the number of units of length which

the kerosene in a certain capillary projecting from a certain bottle

of kerosene moves when the bottle is brought from one temperature
to another. The temperature so defined evidently satisfies the prin-

ciple of the absolute significance of relative magnitude, for if the

size of the unit of length measured along the capillary is cut in half,

the number of degrees in every temperature interval is doubled.

The advantage of the thermodynamic scale is one of simplicity; in

the kerosene scale the behavior of a perfect gas could not be charac-

terized in terms of a single constant, and the Fourier equations of

heat conduction could not be written, except over a very narrow

range, in terms of a single coefficient of thermal conductivity.

Besides the question of the dimensions of temperature, there is

one other question connected with the application of dimensional

analysis to problems in thermodynamics which is apt to be puzzling ;

this is the matter of the so-called logarithmic constants. In books on

thermodynamics equations are very common which on first sight

do not appear to be complete equations or to be dimensionally

homogeneous. These equations often involve constants which cannot

change in numerical magnitude by some factor when the size of the
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fundamental units is changed, but must change by the addition of

some term. An example will be found on page 6 of Nernst's Yale

lectures on the Applications of Thermodynamics to Chemistry. This

equation is :

logC = -
RT R R 2R

In this equation C is a concentration of a given gaseous sub-

stance, A is a heat, a, b, and c are dimensional coefficients in the

usual sense into which we need not inquire further, except that a/R
is dimensionless, and i is a constant of integration. It is obvious that

this formula as it stands does not allow the size of the fundamental

units to be changed by making the usual sort of changes in the

various quantities. But a rearrangement of terms is possible which

throws the formula into the conventional form. If we group together

the terms log C, a/R log T, and i into the single term

C
log

where i' is a new constant, we evidently have a complete equation in

a

the usual sense of the word, and i' has the dimensions of C T R
.

This sort of rearrangement of terms is always possible if the

formula has had a theoretical derivation, as have all the formulas

of these treatises, and the logarithmic constant appears only as a

formal exception.

The logarithmic constant is met with so often in thermodynamic
formulas because in most thermodynamic expressions there is an

undetermined constant of integration arising from the fact that

energy, or work, or entropy, or thermodynamic potential has no

absolute significance, but is only the difference between two values,

and the coordinates of the initial point which fix the origin of

entropy, for example, may be chosen at pleasure.

The formulas of thermodynamics also often present a strange

appearance in the way that concrete quantities (that is, quantities

with dimensions) appear as the arguments of transcendental func-

tions. Thus on page 5 of the same book of Nernst's, we find the

formula.

dT
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This comes from an application of Clapeyron's equation to a sub-

stance whose vapor obeys the perfect gas law, and the volume of

whose vapor is large compared with that of the liquid. In spite of

the appearance of a pressure under the logarithm sign, this equa-

tion is seen on examination to be a complete equation, and holds

valid for all sizes of the fundamental units. This may at once be

seen on expanding
-

,
which is equal to --

,
and is therefore

dT pdT
of zero dimensions in p. Expressions of this sort in which the loga-

rithm is taken of a quantity with dimensions are particularly com-

mon in thermodynamics, and often arise from the equations of the

perfect gas. The occurrence of such logarithmic terms should, it

seems to me, be difficult for those to interpret who like to regard a

dimensional formula as expressing a concrete physical operation on

a concrete physical thing.

That the occurrence of such expressions is not contrary to the n

theorem is seen from the expanded form, -- . The slope of the
p dT

curve, ,
would be one of the variables in which the dimensionless

products are to be expressed, and there is evidently no exception.

Our theorem has merely stated that the results are expressible in

terms of dimensionless products; we have no reason to think that

the man who derived the formula was accommodating enough to

write the formula so that this would appear without some rearrange-

ment of the terms.

Let us close this chapter of special examples with several electri-

cal examples.

As the first example consider an electric circuit possessing capa-

city and inductance. An oscillatory discharge is excited in it. How
does the period of the discharge depend on the constants of the

circuit? The solution of this problem is to be obtained from the

detailed equations of the electric circuit, written in the usual form,

in electromagnetic units. None of the electrostatic effects of the cur-

rent, or the interactions with a magnet, have to be considered in

the equations, which are of the form

d t
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Hence in establishing the units fundamental to this equation it is

evidently sufficient to consider only three fundamental kinds of

quantity, namely, quantity of electricity, time, and energy. Then

current is to be defined as quantity per unit time, coefficient of self-

induction is such a quantity that when multiplied by half the square

of the current it gives an energy, and similarly the capacity is such

a quantity that it gives an energy when divided into the square of a

quantity. We may now make our usual analysis of the problem.

Name of Quantity. Symbol. Dimensional Formula.

Quantity of electricity, q Q
Current, i QT"1

Coefficient of self-induction, L Q~2T 2E

Capacity, c Q^"1

Periodic time, t T

Now the time of oscillation might conceivably involve the con-

stants of the circuit, and the initial charge of the condenser. That

is, we are to look for a relation between q, L, c, and t. Since we are

especially interested in t, we try to find a dimensionless product of

the form

t L* c^ i?.

The exponents are at once found to be

giving as the solution of the problem

t = Const ^ c.

This of course is the solution which would be found by actually

solving the equations of the circuit, except for the value of the con-

stant coefficient. It is to be noticed that the initial charge does not

enter. This problem is evidently the electrical analogue of the

mechanical problem of the simple pendulum.
It is perhaps worth noticing again that some knowledge of the

nature of the solution is necessary before dimensional analysis can

be used to advantage. The Australian bushman, when attacking this

problem for the first time, might be tempted to look for a relation

of the dimensions of a time between the constants of the circuit,

and the instantaneous current, and the instantaneous charge in the

condenser. If he had included i in his list of variables, he would have
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found that q/i also has the dimensions of a time, and his solution

would have been of the form

L
t = /L c f (

\

which is not incorrect, since it reduces to the form already found on

putting f equal to a constant, but it gives less information than the

previous form.

"We now consider a problem in electrostatics. The conception of

the medium introduced by Faraday tells us that it is possible to

regard the medium as the seat of the essential phenomena in the

electrostatic field, and that the condition of the medium at any
instant is uniquely determined by the electric vector at that point.

Let us seek for the connection between the space density of energy
in the electrostatic field and the intensity of the field. Since this is a

problem in statics, the phenomena can be adequately described in

terms of two fundamental units, those of force and length. Further-

more the field equations of electrostatics contain no dimensional con-

stants, so that the velocity of light does not enter the results, as it

did the problem of the mass of the spherical distribution of charge.

In terms of the two fundamental units of force and length we may
make our fundamental definitions as follows. Unit electrostatic

charge is that charge which at distance of unity from an equal

charge in empty space exerts on it a force of unity. The electric

vector is that vector which when multiplied into the charge gives the

force on the charge. The dielectric constant is the ratio of the force

between two charges when in empty space, and when surrounded

by the medium in question. The dimensions of dielectric constant

are obviously zero. The dimensions of energy with this system of

units are obviously force multiplied by distance.

We now formulate the problem.

Name of Quantity. Symbol. Dimensional Formula.

Charge, e

Field strength, E
Energy density, u FL~2

We are to seek for a relation between E and u. Generally there

would not be a relation between these quantities, because there are

two fundamental quantities and two variables. But under the spe-
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cial conditions of this problem a relation exists, and the result is

obvious on inspection to be

u = Const E 2
.

In treatises on electrostatics the constant is found to be %.
If instead of the energy density in empty space we had tried to

find the energy density inside a ponderable body with dielectric

constant e, the above result would have been modified by the appear-

ance of an arbitrary function of the dielectric constant as a factor.

Dimensional analysis can give no information as to the form of the

function. As a matter of fact, the function is equal to the dielectric

constant itself.

This problem is instructive in showing the variety of ways in

which it is possible to choose the fundamental units. Since the prob-

lem is one which may be reduced to formulation in mechanical

terms (the definitions of electrical quantities are given immediately
in terms of mechanical quantities) we might have used the ordinary

three units of mechanics as fundamental, and written the dimen-

sional formulas in terms of mass, length, and time. We would have

obtained the following formulation.

Name of Quantity. Symbol. Dimensional Formula.

Charge, e

Field strength, E
Energy density, u

Again we are to seek for a relation between the energy density

and the field strength. Now here we have two variables and three

kinds of fundamental units, so that again the general rule would

allow no dimensionless products, and no relation, but the relation

between the exponents is such that the dimensionless product does

exist, and in fact is found to be exactly the same as before. The

new formulation in terms of different fundamental units does not

change the result, as it should not.

Many persons will object to the dimensional formulas given for

these electrostatic quantities on the ground that we arbitrarily put
the dielectric constant of empty space equal to unity, whereas we
know nothing about its nature, and therefore have suppressed cer-

tain dimensions which are essential to a complete statement of the

problem. This point of view will of course not be disturbing to the

reader of this exposition, who has come to see that there is nothing
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absolute about dimensions, but -that they may be anything consistent

with a set of definitions which agree with the experimental facts.

However, let us by actual example carry through this problem,

including the dielectric constant of empty space explicitly as a new
kind of fundamental quantity which cannot be expressed in terms

of mass, length, and time. Call the dielectric constant of empty
space k, and use the same letter to stand for the quantity itself, and
its dimension. Then the unit of electrostatic charge is now defined

by the relation, force = e
2
/k r2

. Field strength is to be defined as

before as eE = Force. If we formulate the problem in terms of

these fundamentals, the electrostatic field equations will now con-

tain k explicitly, so that the dimensional constant k appears in the

list of variables. The formulation of the problem is now as follows :

Name of Quantity. Symbol. Dimensional Formula.

Charge, e

Field strength, E
Energy density, u
Dielectric constant of empty

space, k k

We again look for a dimensionless product in which the terms are

E, u, and k, and find the result to be

u = Const k E 2
.

This reduces to that previously found on putting k equal to unity,

which was the value of k in the previous formulation of the problem.
The form above appears somewhat more general than the form

previously obtained in virtue of the factor k, but this factor does

not tell us anything more about nature, but merely shows how the

formal expression of the result will change when we change the for-

mulation of the definitions at the basis of our system of equations.

The inclusion of the factor k in the result and in the definitions is

therefore of no advantage to us, and never can be of advantage, if

our considerations are correct.

There has been much written on the
' '

true
' ' dimensions of k, and

much speculation about the various physical pictures of the me-

chanical structure of the ether which follow from one or another

assumption as to the
' '

true
' '

dimensions, but so far as I am aware,

no result has been ever suggested by this method which has led to

the discovery of new facts, although it cannot be denied that a num-
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ber of experiments have been suggested by these considerations, as

for example those of Lodge on the mechanical properties of the

ether.
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' ' Some attention has lately been called to the question of the

dimensions of the electromagnetic units, but the following sug-

gestion seems to have escaped notice.

"The electrostatic system of units may be defined as one in

which the electric inductive capacity is assumed to have zero

dimensions, and the electromagnetic system is one in which the

magnetic inductive capacity is assumed to have zero dimen-
sions. Now if we take a system in which the dimensions of both
these quantities are the same, and of the dimensions of a slow-

ness, i.e., the inverse of a velocity (T/L), the two systems be-

come identical, as regards dimensions, and differ only by a
numerical coefficient, just as centimeters and kilometers do.

There seems a naturalness in this result which justifies the

assumption that these inductive capacities are really of the

nature of a slowness. It seems possible that they are related

to the reciprocal of the square root of the mean energy of

turbulence of the ether.
' '



CHAPTER VII

APPLICATIONS OF DIMENSIONAL ANALYSIS TO
MODEL EXPERIMENTS. OTHER ENGINEER-

ING APPLICATIONS

HITHERTO we have applied dimensional analysis to problems which

could be solved in other ways, and therefore have been able to check

our results. There are, however, in engineering practise a large

number of problems so complicated that the exact solution is not

obtainable. Under these conditions dimensional analysis enables us

to obtain certain information about the form of the result which

could be obtained in practise only by experiments with an impos-

sibly wide variation of the arguments of the unknown function. In

order to apply dimensional analysis we merely have to know what

kind of a physical system it is that we are dealing with, and what

the variables are which enter the equation ;
we do not even have to

write the equations down explicitly, much less solve them. In many
cases of this sort, the partial information given by dimensional

analysis may be combined with measurements on only a part of the

totality of physical systems covered by the analysis, so that together

all the information needed is obtained with much less trouble and

expense than would otherwise be possible. This method is coming
to be of more and more importance in technical studies, and has

recently received a considerable impetus from the necessities of

airplane design. The method has received wide use at the National

Physical Laboratory in England, and at the Bureau of Standards

in this country, and has been described in numerous papers. At the

Bureau of Standards Dr. Edgar Buckingham has been largely in-

strumental in putting the results of dimensional analysis into such

a form that they may be easily applied, and in making a number

of important applications.

The nature of the results obtainable by this method may be illus-

trated by a very simple example. Suppose that it is desired to con-

struct a very large and expensive pendulum of accurately prede-

termined time of swing. Dimensional analysis shows that the time
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of oscillation of the entire system of all pendulums is given by the

formula t = Const VVg- Hence to determine the time of any

pendulum whatever, it is sufficient to determine by experiment only

the value of the constant in the equation. The constant may evi-

dently be found by a single experiment on a pendulum of any

length whatever. The experimental pendulum may be made as

simple as we please, and by measuring the time of swing of it, the

time of swing of the projected large pendulum may be obtained.

The case of the pendulum is especially simple in that no arbitrary

function appeared in the result. Now let us consider the more gen-

eral case which may be complicated by the appearance of an arbi-

trary function. Suppose that the variables of the problem are

denoted by Q1? Q 2 , etc., and that the dimensionless products are

found, and that the result is thrown into the form

Q, = Q:-Q?> *(Q?Qf- -,Q?Qf- -)

where the arguments of the function and the factor outside embrace

all the dimensionless products, so that the result as shown is general.

Now in passing from one physical system to another the arbitrary

function will in general change in an unknown way, so that little

if any useful information could be obtained by indiscriminate

model experiments. But if the models are chosen in such a restricted

way that all the arguments of the unknown function have the same

value for the model as for the full scale example, then the only
variable in passing from model to full scale is in the factors outside

the functional sign, and the manner of variation of these factors

is known from the dimensional analysis.

Two systems which are so related to each other that the argu-

ments inside the unknown functional sign are equal numerically
are said to be physically similar systems.

It is evident. that a model experiment can give valuable informa-

tion if the model is constructed in such a way that it is physically

similar to the full scale example. The condition of physical simi-

larity involves in general not only conditions on the dimensions of

the model but on all the other physical variables as well.

'As an example let us consider the resistance experienced by a

body of some definable shape in moving through an infinite mass of

fluid. Special cases of this problem are the resistance encountered

by a projectile, by an airplane, by a submarine in deep water, or by
a falling raindrop. The problem is evidently one of mechanics, and
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involves the equations of hydrodynamics. The conditions are ex-

ceedingly complicated, and would be difficult to formulate in pre-
cise mathematical terms, but we perhaps may imagine it done by
some sort of a super-being. The important thing to notice is that no
dimensional constants appear in the equation of hydrodynamics if

the ordinary mechanical units in terms of mass, length, and time

are used, so that the result will involve only the measurable physical
variables. The variables are the resistance to the motion, the velocity

of motion, the shape of the body, which we may suppose specified

by some absolute dimension and the ratio to it of certain other

lengths (as, for instance, the shape of an ellipsoid may be specified

by the length of the longest axis and the ratio to this axis of the

other axes) and the constants of the fluid, which are its density,

viscosity, and compressibility, the latter of which we may specify

by giving the velocity of sound in the fluid. We suppose that gravity

does not enter the results, that is, the body is in uniform motion at

a constant level, so that no work is done by the gravitational forces.

The formulation of the problem is now as follows.

Name of Quantity. Symbol. Dimensional Formula.

Resistance, R MLT~2

Velocity, v LT^1

Absolute dimension, 1 L

Density of fluid, d ML~3

Viscosity of fluid, p ML^T-1

Velocity of sound in the fluid, v' LT"1

Shape factors, fixing shape of

body, r
,
r2 ,

etc.
.

We have here six variables, not counting the shape factors, which

may have any number depending on the geometrical complexity of

the body, so that there are three dimensionless products exclusive

of the shape factors, which are already dimensionless. One of these

three dimensionless products is obvious on inspection, and is v'/v.

We have to find the other dimensionless products in the way best

adapted to this particular problem. Since we are interested in the

resistance to the motion, we choose this as the term with unit

exponent in one of the products, so that we may write the result

with R standing alone on the left-hand side of the equation. We find

by the methods that we have used so many times that there are two
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dimensionless products of the forms R v~2 1~2 d"1 and
/u,
v"1 1"1 d"1

,

so that the final solution takes the form

R = v2
1
2 d f (^/v 1 d, v'/v, r

,
r2 ,

-
-) .

This formula is so broad as to cover a wide range of experimental

conditions. If the velocity is low, the problem reduces to one of

equilibrium in which the forces on the solid body immersed in the

fluid are held in equilibrium by the forces due to the viscosity in the

fluid. The resistance does not depend on the density of the fluid, nor

on the velocity of sound in it. Evidently if the density is to disap-

pear from the above result, the argument /u/vld must come outside

the functional sign as a factor, and for slow motion the law of

resistance takes the form

Rr=vl/xf (r ,r2 ,

----
).

The resistance at low velocities is therefore proportional to the vis-

cosity, to the velocity, and to the linear dimensions, and besides this

depends only on the geometrical shape of the body. We have already

met a special case in the Stoke 's problem of the sphere, in the intro-

ductory chapter.

For a domain of still higher velocities the density of the fluid

plays an important part, since some of the force acting on the body
is due to the momentum carried away from the surface of the body

by the fluid in the form of eddies (and the momentum carried away
obviously depends on the density of the fluid), but the velocity of

sound has not yet begun to affect the result, which means that the

fluid acts sensibly like an incompressible liquid. This is the realm

of velocities of interest in airplane work. Under these conditions the

argument v'/v drops out of the function, therefore, and the result

becomes

Let us stop to inquire how the information given by this equation

can be used in devising model experiments. What we desire to do is

to make a measurement of the resistance encountered by the model

under certain conditions, and to infer from this what would be the

resistance encountered by the full size example. It is in the first

place obvious that the unknown function must have the same value

for the model and the original. This means, since the function is

entirely unknown, that all the arguments must have the same value
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for the model and the original. rx ,
r2 , etc., must therefore be the

same for both, or in other words, the model and the original must be

geometrically of the same shape. Furthermore, ju/vld must have the

same numerical value for both. If the model experiment is to be per-

formed in air, as it usually is, /A and d are the same for the model

and original, so that vl must be the same for model and original.

That is, if the model is one-tenth the linear dimensions of the orig-

inal, then its velocity must be ten times as great as that of the

original. Under these conditions the formula shows that the resist-

ance encountered by the model is exactly the same as that encoun-

tered by the original. Now this requirement imposes such difficult

conditions to meet in practise, demanding velocities in the model

of the order of thousands of miles per hour, that it would seem at

first sight that we had proved the impossibility of model experi-

ments of this sort. But in practise the function of //./v 1 d turns

out to have such special properties that much important informa-

tion can nevertheless be obtained from the model experiment. If

measurements are made on the resistance of the model at various

speeds, and the corresponding values of the function calculated

(that is, if the measured resistances are divided by v2
1
2

d), it will be

found that at high values of the velocity the function f approaches

asymptotically a constant value. This means that at high velocities

the resistance approaches proportionality to the square of the veloc-

ity. It is sufficient to carry the experiment on .the model only to

such velocities that the asymptotical value of the function may be

found, in order to obtain all the information necessary about the

behavior of the full scale example, for obviously we now know that

the resistance is proportional to the square of the velocity, and the

model experiment has given the factor of proportionality. The only

doubtful point in this proposed procedure is the question as to

whether it is possible to reach with the model speeds high enough
to give the asymptotic value, and this question is answered by the

actual experiment in the affirmative.

The fact that at the velocities of actual airplane work the- resist-

ance has become proportional to the square of the velocity means,

according to the analysis, that the viscosity no longer plays a

dominant part. This means that skin friction has dropped out as an

important part of the retarding force, and that all the work of

driving the airplane is used in creating eddies in the air. Freedom
from viscosity and complete turbulence of motion are seen by the
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analysis to be the same thing. This view of the phenomena is abun-

dantly verified by experiment.

Let us consider the possibility of making model experiments in

some other medium than air. If we choose water as the medium for

the model we must so choose the dimensions and the velocity of the

model that /x/v d 1 for the model is equal to p/v d 1 for the origi-

nal. Now for water /x is 10~2 and d is 1, whereas for air
//,

is 170 X
10~6 and d is 1.29 X 10~3

. Substituting these values shows that vl

for the model must be about one-thirteenth of the value for the

original. As a factor one-thirteenth is itself about the reduction in

size that would be convenient for the model
;
this would mean that

the model in water must travel at about the same rate as the original

in air. Such high velocities in water are difficult, and there seems

no advantage in using water over the actual procedure that is pos-

sible in air.

Consider now still higher velocities, such as those of a projectile,

which may be higher than the velocity of sound in the medium, so

that the medium has difficulty in getting out of the way of the body,

and we have a still different order of effects. At these velocities the

viscosity has entirely disappeared from the result, which now takes

the form

R = v2
l
2 df (v'/v, ri,r2 , ).

If we are now to make model experiments, it is evident that the

model projectile must be of the same shape as the original, and

furthermore that v'/v must have the same value for the model and

the original. If the model experiment is ,made in air, v' for the

model will be the same as for the original, so that v must be the same

also. That is, the original and the model must travel at the same

speed. Under these conditions the formula shows that the resistance

varies as the area of cross section of the projectile. The requirement

that the model must travel at the same speed as the original imposes

such severe restrictions in practise that model experiments on pro-

jectiles are most difficult, and apparently have not yet been success-

fully made, but all the information has been derived from experi-

ence with actual projectiles.

We may try to avoid the difficulty by making the experiment in

another medium, such as water. But the velocity of sound in water

is of the order of five times that in air, so that the conditions would

require that the velocity of the model projectile in water should be
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five times that of the actual projectile in air, an impossible require-
ment.

Besides these applications to model experiments, the results of

dimensional analysis may be applied in other branches of engineer-

ing. At the Bureau of Standards extensive applications have been

made in discussing the performance of various kinds of technical

instruments. A class of instruments for the same purpose have

certain characteristics in common so that it is often possible to write

down a detailed analysis applicable to all instruments of the par-
ticular type. Dimensional analysis gives certain information about

what the result of such an analysis must be, so that it is possible to

make inferences from the behavior of one instrument concerning the

behavior of other instruments of somewhat different construction.

This subject is treated at considerable length and a number of

examples are given in Aeronautic Instruments Circular No. 30 of

the Bureau of Standards, written by Mr. M. D. Hersey.
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CHAPTER VIII

APPLICATIONS TO THEORETICAL PHYSICS

THE methods of dimensional analysis are worthy of playing a much
more important part as a tool in theoretical investigation than has

hitherto been realized. No investigator should allow himself to pro-

ceed to the detailed solution of a problem until he has made a

dimensional analysis of the nature of the solution which will be

obtained, and convinced himself by appeal to experiment that the

points of view embodied in the underlying equations are sound.

Probably one difficulty that has been particularly troublesome in

theoretical applications has been the matter of dimensional con-

stants
;
it is in just such theoretical investigations that dimensional

constants are most likely to appear, and with no clear conception

of the nature of a dimensional constant or when to expect its ap-

pearance, hesitancy is natural in applying the method. But after

the discussion of the preceding pages, the matter of dimensional

constants should now be readily handled in any special problem.

The indeterminateness of the numerical factors of proportionality

is often also felt to be a disadvantage of the dimensional method,

but in many theoretical investigations it is often possible to obtain

approximate information about the numerical order of magnitude
of the results. Our considerations with regard to dimensional

analysis show that any numerical coefficients in the final result are

the result of mathematical operations performed on the original

equations of motion (in the general sense) of the system. Now it is

a result of general observation that such mathematical operations

usually do not introduce any very large numerical factors, or any

very small ones. Any very large or small numbers in our equations

almost always are the result of the substitution of the numerical

value of some physical quantity, such as the number of atoms in a

cubic centimeter, or the electrostatic charge on the electron, or the

velocity of light. Accordingly, if the analysis is carried through
with all the physical quantities kept in literal form, we may expect

that the numerical coefficients will not be large or small.

This observation may be used conversely. Suppose that we suspect
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a connection between certain quantities, but as yet do not know

enough of the nature of the physical system to be able to write down
the equations of connection, or even to be sure what would be the

elements which would enter an equation of connection. We assume

that there is a relation between certain quantities, and then by a

dimensional analysis find what the form of the relation must be. We
then substitute into the relation the numerical values of the physi-
cal quantities, and thus get the numerical value of the unknown
coefficient. If this coefficient is of the order of unity (which may
mean not of the order of 1010

according to our sanguinity) the sus-

pected relation appears as not intrinsically improbable, and we
continue to think about the matter to discover what the precise

relation between the elements may be. If, on the other hand, the

coefficient turns out to be large or small, we discard the idea as

improbable.

An exposition of this method, and an interesting example were

given by Einstein1 in the early days of the study of the specific

heats of solids and their connection with quantum phenomena. The

question was whether the same forces between the atoms which

determine the ordinary elastic behavior of a solid might not also be

the forces concerned in the infra red characteristic optical fre-

quencies. This view evidently had important bearings on our whole

conception of the nature of the forces in a solid, and the nature of

optical and thermal oscillations.

For the rough analysis of the problem in these terms we may
regard the solid as an array of atoms regularly spaced at the corners

of cubes. In our analysis we shall evidently want to know the mass

of the atoms, and their distance apart (or the nunjber per cm3
).

Furthermore, if our view of the nature of the forces is correct the

nature of the forces between the atoms is sufficiently characterized

by an elastic constant, which we will take as the compressibility.

These elements should now be sufficient to determine the infra red

characteristic frequency. We make our usual analysis of the

problem.

Name of Quantity. Symbol. Dimensional Formula.

Characteristic frequency, v T"1

Compressibility, k M-1LT 2

Number of atoms per cm8
,

N L~3

Mass of the atom, m M
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There should be one dimensionless product in these quantities,

and it is at once found to be k v
2 N* m. The final result is therefore

k = Const v~2 N-S m-1
.

"We now take the numerical values pertaining to some actual sub-

stance and substitute in the equation to find the numerical value of

the coefficient. For copper, k = 7 X 10~13
,
v 7.5 X 1012

,
m = 1.06

X 10~22
,
and N = 7.5 X 1022

. Substituting these values gives for

the constant 0.18. This is of the order of unity, and the point o'f

view is thus far justified. It is of course now a matter of history

that this point of view is the basis of Debye 's analysis of the specific

heat phenomena in a solid, and that it is brilliantly justified by
experiment.

Another example of this sort of argument concerning the magni-
tude of the constants is given by Jeans. 2 The question was whether

the earth has at any time in its past history passed through a stage
of gravitational instability, and whether this instability has had any
actual relation to the course of evolution. A preliminary examina-

tion by the method of dimensions showed Jeans what must be the

form of the relation between the variables such as mean density,

radius, elastic constants, etc., at the moment of gravitational insta-

bility, and then a substitution of the numerical values for the earth

gave a coefficient of the order of unity. This preliminary examina-

tion showed, therefore, that it was quite conceivable that gravita-

tional instability might be a factor at some time past or future in

the earth 's history, and a more detailed examination of the problem
was accordingly undertaken.

Consider another application of the same argument, this time

with a negative result. Let us suppose that we are trying to con-

struct an electrodynamic theory of gravitation, and that we regard

the gravitational field as in some way, as yet undiscovered, con-

nected with the properties of the electron, to be deduced by an

application of the field equations of electrodynamics. Now in the

field equations there occurs a dimensional constant c, the ratio of

the electromagnetic and electrostatic units, which is known to be

of the dimensions of a velocity, and numerically to be the same as

the velocity of light.

In searching for a relation of the sort suspected, we therefore

consider as the variables the charge on the electron, the mass of the
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electron (for charge and mass together characterize the electron),

the velocity of light, and the gravitational constant. We make the

following analysis :

Name of Quantity. Symbol. Dimensional Formula.

Gravitational constant, G
Charge on electron, e

Mass of electron, m M
Velocity of light, c LT~*

We have four variables, and three fundamental units, so that we

expect one dimensionless product. This is at once found to be

Gm2e~2
,
the velocity of light not entering the hypothetical relation,

and the final result taking the significantly simple form

G=r Const (e/m)
2

.

We now substitute numerical values to find the magnitude of the

constant. G = 6.658 X 10~8
,
and e/m = 5.3 X 10 17

,
so that Const

= 2.35 X 10~43
.

The constant is seen therefore to be impossibly small, and we give

up the attempt to think how there might be a relation between these

quantities, although the simplicity of the dimensional relation be-

tween G and e/m is arresting.

Identity of dimensional formulas must not be thought, therefore,

to indicate an a priori probability of any sort of physical relation.

When there are so many kinds of different physical quantities ex-

pressed in terms of a few fundamental units, there cannot help

being all sorts of accidental relations between them, and without

further examination we cannot say whether a dimensional relation

is real or accidental. Thus the mere fact that the dimensions of the

quantum are those of angular momentum does not justify us in

expecting that there is a mechanism to account for the quantum

consisting of something or other in rotational motion.

The converse of the theorem attempted above does hold, however.

If there is a true physical connection between certain quantities,

then there is also a dimensional relation. This result may be used

to advantage as a tool of exploration.

Consider now a problem showing that any true physical relation

must also involve a dimensional relation. Suppose that we are try-



92 DIMENSIONAL ANALYSIS

ing to build up a theory of thermal conduction, and are searching
for a connection between the mechanism of thermal conduction and
the mechanism responsible for the ordinary thermodynamic be-

havior of substances. The thermodynamic behavior may be consid-

ered as specified by the compressibility, thermal expansion, specific

heat (all taken per unit volume), and the absolute temperature. If

only those aspects of the mechanism which are responsible for the

thermodynamic behavior are also effective in determining the

thermal conductivity, then it must be possible to find a dimensional

relation between the thermodynamic elements and the thermal con-

ductivity. We have the following formulation of the problem.

Name of Quantity. Symbol. Dimensional Formula.

Thermal conductivity, /x

Compressibility per unit vol-

ume, k M~2L4T2

Thermal expansion per unit

volume, A Mr^L3^1

Specific heat per unit volume, C L2^2^1

Absolute temperature,

We are to seek for a dimensionless product in these variables.

There are five variables, and four fundamental kinds of quantity,

so that we would expect one dimensionless product. Since /* is the

quantity in which we are particularly interested, we choose it as the

member of the product with unity for the exponent, write the

product in the form

and attempt to solve for the exponents in the usual way. We soon

encounter difficulties, however, for it appears that the equations are

inconsistent with each other. This we verify by writing down the

determinant of the exponents in the dimensional formulas for k, A,

C, and 0. The determinant is found to vanish, which means that the

dimensionless product does not exist. Hence the hypothetical rela-

tion between thermal conductivity and thermodynamic data does

not exist, and the mechanism of the solid must have other properties

than those sufficient to account for the thermodynamic data alone.

We now give a simple discussion of the problem of radiation from

a black body. A much more elaborate discussion has been given by
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Jeans. 3 The paper of Jeans is also interesting because he uses a

system of electrical units in which the dielectric constant of empty
space is introduced explicitly. It is easy to see on a little examina-

tion that he would have obtained the same result with a system of

units in which the dielectric constant of empty space is defined as

unity.

Let us now consider a cavity with walls which have absolutely

no specific properties of their own, but are perfect reflectors of any
incident radiation. Inside the cavity is a rarefied gas composed of

electrons. If the gas is rarefied enough we know from such con-

siderations as those given by Richardson in considering thermionic

emission that the electrons function like a perfect gas, the effect of

the space distribution of electrostatic charge being negligible in

comparison with the forces due to collisions as gas particles. The
electron gas in the cavity is to be maintained at a temperature 0.

The electrons are acted on by two sets of forces; the collisional

forces with the other electrons, which are of the nature of the forces

between atoms in ordinary kinetic theory, and the radiational field

in the ether. Since the electrons are continually being accelerated,

they are continually radiating, and they are also continually absorb-

ing energy from the radiational field of the ether. The system must

eventually come to equilibrium with a certain energy density in the

ether, the electrons possessing at the same time the kinetic energy

appropriate to gas atoms at the temperature of the enclosure. The

detailed solution of the problem obviously involves a most com-

plicated piece of statistical analysis, but a dimensional analysis

gives much information about the form of the result.

In solving this problem we shall have to use the field equations

of electrodynamics, so that the velocity of light will be a dimensional

constant in the result. The charge and the mass of the electron must

be considered, the absolute temperature, and the gas constant, be-

s cause this determines the kinetic energy of motion of the electrons

as a function of temperature. The number of electrons per cm
3 does

not enter, because we know from kinetic theory that the mean

velocity of the electrons is independent of their number. The second

law of thermodynamics also shows that the energy density in the

enclosure is a function of the temperature, and not of the density

of the electron gas.

Our formulation of the problem is now as follows :
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Name of Quantity. Symbol. Dimensional Formula.

Energy density, u ML"111
"2

Velocity of light, c

Mass of electron, m M
Charge of electron, e

Absolute temperature, 6 6

Gas constant, k

The ordinary electrostatic system of units is used. There are here

six variables and four fundamental kinds of unit, hence two dimen-

sionless products, unless there should be some special relation be-

tween the exponents. Since we are especially interested in u we

choose this as the member of one of the products with unit exponent.

We find in the usual way that two products are

u e
6 k~4 0~4 and k m-1 c~2

.

The result therefore takes the form

u = k4 e-6 6* f (k e m-1 c~2
).

We as yet know nothing of the nature of the arbitrary function.

The argument of the function, however, is seen to have a definite

physical significance, kflrn"1 is half the square of the velocity of the

electron (k0 being its kinetic energy), so that the argument is one-

half the square of the ratio of the velocity of the electron to the

velocity of light. Now this quantity remains exceedingly small in

the practical range of temperature, so that whatever the form of the

function, we know that we have a function of a quantity which is

always small. By an extension of the reasoning which we employed
for the numerical value of any coefficients to be met with in dimen-

sional analysis, we may say that the probability is that the numeri-

cal value of such a function is sensibly the same as its value for the

value zero of the argument, that is, the function may be replaced

by a constant for the range of values of the variable met with in

practise. Hence with much plausibility we may expect the result

to be of the form

u = Const k4 e-6 0*.

is the only physical variable on the right-hand side of this equa-

tion, so that as far as physical variables go the result may be written

in the form

u = a P.
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This, of course, is the well-known Stefan 's law, which checks with

experiment. The result therefore justifies to a certain extent the

views which led us to the result.

Our argument about the size of numerical coefficients would lead

us to expect that the constant in the first form of the result could

not be too large or too small. That is, if we put a = Const k* e"6
,
the

result should have a certain simplicity of form, such as might seem

to be a plausible result of a mathematical operation. Now Lewis and

Adams4 have called attention to the fact that within the limits of

experimental error the constant of Stefan's law may be written in

the form

a k4
/(47re)

6
.

Although (4 7r)
6
is not an especially small number in the sense of

the original formulation by Einstein of the probability criterion for

numerical coefficients, it is nevertheless to be regarded as small con-

sidering the size of the exponents of the quantities with which it is

associated, |
and it is undeniable that the result is of such simplicity

that it seems probable that the coefficient may be the result of a

mathematical process, and is not merely due to a chance combina-

tion of elements in a dimensionally correct form. !

At any rate, whatever our opinions as to the validity of the argu-

ment, the striking character of the result sticks in our minds, and

we reserve judgment until the final solution is forthcoming, in the

same way that the periodic classification of the elements had to be

carried along with suspended judgment until the final solution was

forthcoming. It may be mentioned that Lorentz and his pupils have

tried a detailed analysis on these terms, with unsuccessful results.

The above analysis gives other opportunities for thought. It is

significant that the quantum h does not enter the result, although it

appears to be inseparably connected with the radiation processes,

at least in ponderable matter. We know that h enters the formula

for the spectral distribution of energy, and we also know from

thermodynamics that the distribution of energy throughout the

spectrum in a cavity such as the above is the same as the distri-

bution in equilibrium with a black body composed of atoms. The

spectral distribution in the cavity which we have been considering

must therefore involve h. Does this mean that h can be determined

in terms of the electronic constants, the gas constant, and the con-
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stants of the ether, so that no mechanism with which we are not

already familiar is needed to account for h? Of course Lewis has

used Planck's formula for h in terms of a, etc., in order to obtain a

numerical value for h in terms of other quantities.

As an additional example of the application of dimensional analy-

sis in theoretical investigations let us examine the possibility of

explaining the mechanical behavior of substances on the basis of a

particular form of the law of force between atoms. "We suppose that

the law of force can be written in the form

F = A r~2 + B r~n .

A is to be intrinsically negative, and represents an attractive force,

and B is positive, and represents a force of repulsion which becomes

very intense on close approach of the atoms. The atoms of different

substances may differ in mass and in the numerical value of the

coefficients A and B, but the exponent n is to be the same for all

substances. We also suppose that the temperature is so high that the

quantum h plays no important part in the distribution of energy

among the various degrees of freedom, but that the gas constant

is sufficient in determining the distribution. The external variables

which may be imposed on the system are the pressure and the tem-

perature. When these are given the volume is also determined, and

all the other properties. We have, therefore, the following list of

quantities in terms of which any of the properties of the substance

are to be determined.

Name of Quantity. Symbol. Dimensional Formula.

Pressure, p ML-1T-2

Temperature, 6

Mass of the atom, m M
Gas constant, k MLT"2^1

A (of the law of force), A ML3T~2

B (of the law of force), B MLn+1 T- 2

In addition to these we will have whatever particular property
of the substance is under discussion. In the above list there are six

quantities in terms of four fundamental units. Therefore from this

list of permanent variables there are two dimensionless products.
Let us find them. We will choose one involving p and not 0, and the
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other 6 and not p, since p and are the physical variables under

our control. The products are at once found to be

_n + 2 *

pA n - 2 Bn - 2

and
n -1 1

A~^2 B5TT2 k 6.

The existence of these two products already gives us information

about the behavior of the body in those cases in which pressure and

temperature are not independently variable quantities, as they are

not on the vapor pressure curve, or on the melting curve, or on the

curve of equilibrium between two allotropic modifications of the

solid. Under these conditions we have

n-f 2 4 / n-1 1 \

p A~^* B^7* = f lA"^^ Birr 2 k 0/,

where f is the same function for all substances. A and B vary from

substance to substance. Hence this analysis shows that in terms of

a new variable p C x for the pressure, and a new variable B C 2 for

temperature, the equations for the equilibrium curves of all sub-

stances are the same. These new pressure and temperature variables

are obtained by multiplying the ordinary pressure and temperature

by constant factors, and may be called the reduced pressure and

temperature. Van der Waal's equation is a particular case of such

an equation, which becomes the same for all substances in terms of

the reduced variables.

Now consider any other physical property of the substance which

is to be accounted for in terms of the variables of the analysis above.

We have to form another dimensionless product in which it is

involved. This dimensionless product may most conveniently be

expressed in terms of the quantities m, k, A, and B, since these are

physically invariable for the particular substance. The expression

of any physical quantity is always dimensionally possible in terms

of these quantities, unless the determinant of the exponents of m, k,

A, and B vanishes, and this is seen to vanish only in the case n =
+2, which is the trivial case of the force reducing to an attraction

alone. Hence in the general case any physical property, which we

may call Q, may be expressed in the form

(n+2
* n-1 1 \

p A~^~2 B^ A~^ B5^ k 0),
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where the Const may involve m, k, A, and B in any way, but does

not involve p or 6. Now if we define Q/Const as the
' (

reduced ' '

value

of Q, then we have the important result that for all substances of

this type the equation connecting the reduced value of a quantity

Q with the reduced pressure and temperature is the same. This

applies not only to thermodynamic properties, but to all properties

which are to be explained in terms of the same structure, such as

thermal conductivity or viscosity.

The values of the factors by means of which the measured values

of the physical variables are converted to "reduced" values will

enable us to compute A, B, and m for the substance in question, if n
can be otherwise determined.

It is evident on consideration of the above work that the only

assumption which we have made about n is that it is dimensionless,

and that we have not used the assumption stated in the beginning

that n is the same for all substances. We may therefore drop this

assumption, and have the theorem that for all substances whose

behavior can be determined in terms of atoms which are character-

ized by a mass and a law of force of the form Ar~2 + Br~n
,
with no

restriction on A, B, or n, there is a law of corresponding states for

all physical properties. \

Evidently it would be possible to carry through an analysis like

the above in which the external variables p and are replaced by

any other two which might be convenient, such as certain of the

thermodynamic potentials, and the same result would have been

obtained, unless there should happen to be special relations between

the dimensional exponents. Whether there are such special relations

can be easily determined in any special case.

Before anyone starts on a detailed development of such a theory

of the structure of matter as this, he would make a preliminary

examination to see whether the properties of substances do actually

obey such a law of corresponding states, and govern his future

actions accordingly. The value of the advance information obtained

in this way is incontestable.

The analysis above reminds one in some particulars of that of

Meslin,
5 but is much more general, in that the analysis of Meslin

applied only to the equation of state, and had to assume the exist-

ence of critical, or other peculiar points.

As a final application of dimensional analysis to theoretical
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physics we consider the determination of the so-called absolute sys-

tems of units.

The units in ordinary use are ones whose absolute size is fixed

in various arbitrary ways, although the relations between the differ-

ent sorts of units may have a logical ring. Thus the unit of length,

the centimeter, was originally denned as bearing a certain relation

to a quadrant of the earth 's circumference, and the unit of mass is

the mass of a quantity of water occupying the unit volume. There is

something entirely arbitrary in selecting the earth and water as the

particular substances which are to fix the size of the units.

We have also met in the course of our many examples dimensional

constants. These constants usually are the expression of some pro-

portionality factor which enters into the expression of a law of

nature empirically discovered. Such dimensional constants are the

constant of gravitation, the velocity of light, the quantum, the con-

stant of Stefan's law, etc. Now the numerical magnitude of the

dimensional constants depends on the size of the fundamental units

in a way fixed by the dimensional formulas. By varying the size of

the fundamental units, we may vary in any way that we please the

numerical magnitude of the dimensional constant. In particular, by

assigning the proper magnitudes to the fundamental units we might
make the numerical magnitudes of certain dimensional constants

equal to unity. Now the dimensional constants are usually the

expression of some universal law of nature. If the fundamental units

are so chosen in size that the dimensional constants have the value

unity, then we have determined the size of the units by reference to

universal phenomena instead of by reference to such restricted

phenomena as the density of water at atmospheric pressure at some

fixed temperature, for instance, and the units to that extent are

more significant.

There is no reason why one should be restricted to dimensional

constants of universal occurrence in fixing the size of the units, but

any phenomenon of universal occurrence may be used. Thus the

units may be so chosen that the charge on the electron is unity.

Any system of units fixed in this way by reference to phenomena
or relationships of universal occurrence and significance may be

called an absolute system of units. The first system of absolute units

was given by Planck6 in his book on heat radiation. He connected

the particular system which he gave with the quantum, and it might

appear from Planck's treatment that before the discovery of the
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quantum there were not enough, dimensional constants of the proper
character known to make possible a universal system of units, but

such is not the case. Planck was the first to think of the possibility

of absolute units, and used the quantum in determining them, but

there is no necessary connection with the quantum, as may be seen

in the following discussion.

Let us now determine from the dimensional formulas the set of

absolute units given by Planck. To fix this set of units we choose

the constant of gravitation, the velocity of light, the quantum, and

the gas constant. "We require that the fundamental units be of such

a size that each of these dimensional constants has the value unity
in the new system. The discussion may be simplified for the present

by omitting the gas constant, for this is the only one which involves

the unit of temperature, and it is obvious that after the units of

mass, length, and time have been fixed, the gas constant may be

made unity by properly choosing the size of the degree. In deter-

mining the size of the new units we find it advantageous to choose

the form of notation used in the third chapter in changing units.

Consider, for example, the constant of gravitation. We write this as

Constant of gravitation = G = 6.658 X 10~8 gmr1 cm3 see"2 .

The value in the new system of units is to be found by substituting

in the expression for G the value of the new units in terms of the

old. Thus if the new unit of mass is such that it is equal to x gm,
and the new unit of length is equal to y cm, and the new unit of

time to z sec, we shall have as the equation to determine x, y, and z,

since the numerical value of the gravitational constant is to be unity
in the new system

6.658 X 10~8 gm"1 cm3 see"2 = 1 (x gm)-1
(y cm)

3
(z sec)"

2
.

The other two dimensional constants give the two additional equa-

tions needed to determine x, y, and z. These other equations are

immediately written down as soon as the dimensional formulas and

the numerical values of the velocity of light and the quantum are

known. The equations are

3 X 1010 cm sec"1 = 1 (y cm) (z sec)"
1

6.55 X 10~27 gm cm2 sec"1 = 1 (x gm) (y cm)
2
(z sec)-

1
.

This set of three equations may be readily solved, and gives x =
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5.43 X 10~5
, y = 4.02 X 10~33

,
and z = 1.34 X 10~43

. This means
that

the new unit of mass is 5.43 X 10~5 gm
the new unit of length 4.02 X 10~33 cm
the new unit of time 1.34 X 10~43

sec.

So far all is plain sailing, and there can be no question with

regard to what has been done. The attempt is sometimes made to go
farther and see some absolute significance in the size of the units

thus determined, looking on them as in some way characteristic of a

mechanism which is involved in the constants entering the defini-

tion. Thus Eddington
7
says: "There are three fundamental con-

stants of nature which stand out preeminently, the velocity of light,

the constant of gravitation, and the quantum. From these we can

construct a unit of length whose value is 4 X 10~33 cm. There are

other natural units of length, the radii of the positive and negative

charges, but these are of an altogether higher order of magnitude.
"With the possible exception of Osborne Reynold's theory of matter,

no theory has attempted to reach such fine grainedness. But it is

evident that this length must be the key to some essential structure.
' '

Speculations such as these arouse no sympathetic vibration in the

convert to my somewhat materialistic exposition. The mere fact that

the dimensional formulas of the three constants used was such as to

allow a determination of the new units in the way proposed seems

to be the only fact of significance here, and this cannot be of much

significance, because the chances are that any combination of three

dimensional constants chosen at random would allow the same pro-

cedure. Until some essential connection is discovered between the

mechanisms which are accountable for the gravitational constant,

the velocity of light, and the quantum, it would seem that no signifi-

cance whatever should be attached to the particular size of the units

defined in this way, beyond the fact that the size of such units is

determined by phenomena of universal occurrence.

Let us now continue with our deduction of the absolute units,

and introduce the gas constant. For this we have the equation

Gas constant = k = 2.06 X 10~16 gm cm2 see"2 0"1

1 (xgm) (ysec)
2
(zsec)~

2
(wfl)-

1
.

x, y, and z are already determined, so that this is a single equa-

tion to determine w. The value found is 2.37 X 1032
. This means
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that the new degree must be equal to 2.37 X 1032
ordinary Centi-

grade degrees.

In the wildest speculations of the astrophysicists no such tem-

perature has ever been suggested, yet would Professor Eddington
maintain that this temperature must be the key to some funda-

mental cosmic phenomenon?
It must now be evident that it is possible to get up systems of

absolute units in a great number of ways, depending on the univer-

sal constants or phenomena whose numerical values it is desired to

simplify. "With any particular selection of constants, the method

in general is the same as that in the particular case above. In general

there will be four fundamental kinds of unit, if we want to restrict

ourselves to the electrostatic system of measuring electrical charges,

and define the magnitude of the charge in such a way that the force

between two charges is equal to their product divided by the square

of the distance between them, or if we do not restrict ourselves to the

electrostatic system, there may be five fundamental kinds of quan-

tity. There seems to be nothing essential in the number five, which

merely arises because we usually find it convenient to use the me-

chanical system of units in which the constant of proportionality

between force and the product of mass and acceleration is always

kept fixed at unity. The convenience of this system is perhaps more

obvious in the case of mechanical phenomena, because of the univer-

sality of their occurrence. But if temperature effects were as univer-

sal and as familiar to us, we would also insist that we always deal

only with that system of units in which the gas constant has the

fixed value unity.

Having, therefore, fixed the number of fundamental units which

we deem convenient, and having chosen the numerical constants

whose values we wish to simplify, we proceed as above. It is evident

that it will in general be necessary to assign as many constants as

there are fundamental units, for otherwise there will not be enough

equations to give the unknowns. Thus above, we fixed four con-

stants, gravitational, velocity of light, quantum, and gas constant,

and we had four fundamental kinds of units. Now it is important

to notice that four algebraic equations in four unknowns do not

always have a solution, but the coefficients must satisfy a certain

condition. This condition is, when applied to the dimensional for-

mulas into which the unknowns enter, that the determinant of the

exponents must not vanish. In general, a four-rowed determinant
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selected at random would not be expected to vanish. In the case of

the determinants obtained from the dimensional formulas of the

constants of nature this is not the case, however, because the dimen-

sional formulas are nearly all of them of considerable simplicity,

and the exponents are nearly always small integers. It very often

happens that the determinant of the exponents of four constants

chosen at random vanishes, and the proposed scheme for determin-

ing the absolute units turns out to be impossible. The vanishing of

the determinant means that all the quantities are not dimensionally

independent, so that we really have not four but a smaller number

of independent quantities in terms of which to determine the un-

knowns. For instance, we have found that the gravitational constant

dimensionally has the same formula as the square of the ratio of

the charge to the mass of the electron. This means that we could

not set up a system of absolute units in which the gravitational

constant, the charge on the electron, and the mass of the electron

were all equal to unity. Now let us write down some of the impor-

tant constants of nature and see what are the possibilities in the

way of determining systems of absolute units.

Gravitation constant, G 6.658 X 10"8 gm"1 cm3 sec~2

Velocity of light, c 3 X 1010 cm sec"1

Quantum, h 6.547 X 10"27
gm-cm

2 sec"1

Gas constant, k 2.058 X 10"16 gm cm2 see"2 C-1

Stefan constant, a 7.60 X 10~15 gm cm"1 see"2 C-4

First spectral constant, C 0.353 X gm. cm4 sec~3

Second spectral constant, a' 1.431 cm C

Rydberg constant, R 3.290 X 1015 sec"1

Charge of the electron, e 4.774 X 10"10 gm' cm* sec- 1

Mass of the electron, m 8.8 X 10~28 gm
Avogadro number, N 6.06 X 1023 gm"1

Second Avogadro number, N' 7.29 X 1015 gm"1 cm~2 sec2 C

Some of the quantities in the above list require comment. The

Stefan constant "a" is defined by the relation u = a04
,
where u is

the energy density in the hohlraum in equilibrium with the walls

at temperature 0. The first and second spectral constants are the

constants in the formula

Cr*l -1-1

-vp-ij
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for the distribution of energy in the spectrum. The Avogadro num-
ber N is denned as the number of molecules per gm molecule, and
its dimensions may be obtained from the formula for it

;
N = (no. of

molecules per gm) X (mass of molecule / mass of hydrogen mole-

cule). Its dimensions are evidently the reciprocal of a mass, and the

numerical value is merely the reciprocal of the mass of the hydro-

gen molecule. The second Avogadro number N' is denned as the

number of molecules per cm3 in a perfect gas at unit temperature
and at unit pressure. We know that this number is independent of

the particular gas, and is therefore suited to be a universal constant.

Its dimensions are evidently those of vol"1
pressure"

1
temp, and the

numerical value may be found at once in terms of the other

constants.

We have now a list of twelve dimensional constants in terms of

which to define an absolute system of units. Since these constants

are defined in that system in which there are four fundamental

kinds of unit, in general any four of the twelve would sufiice for

determining the absolute system of units, but the relations are so

simple that there are a large number of cases in which the deter-

minant of the exponents vanishes, and the choice is not possible. For

instance, C has dimensionally the same formula as he2

,
so that no

set of four into which C, h, and c all enter is a possible set. k has the

dimensions of cha'"1
,
so that the set k, c, h, and a' is not possible.

N' has the dimensions of k"1
,
so that no set of four into which both

k and N' enter is possible. The examples might be continued further.

The moral is that it is not safe to try for a set of absolute units in

terms of any particular group of constants until one is assured that

the choice is possible. For instance, one set that might seem quite

fundamental turns out to be impossible. It is not possible so to

choose the magnitudes of the units that the velocity of light, the

quantum, the charge on the electron, and the gas constant all have

the value unity.

By way of contrast, certain sets which are possible may be men-

tioned. It will be found that the determinant of the exponents of

the following does not vanish; G, c, h, k; G, c, e, k; N, c, h, k;

N, c, e, k.

If one has certain criteria of taste which make certain of the above

list of quantities objectionable as universal constants, somewhat

startling results may be obtained. Let us decline to consider the

quantities R, m, N, and N'. There remain G, c, h, k, a, C, a', and e.
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Now it will be found that the last seven of these have the property
that it is not possible to choose any four of them whose exponential
determinant does not vanish. Hence any set of four quantities in

terms of which the absolute system of units is to be determined, if

selected from the above list of eight, must include the gravitational

constant. This fact is what has made possible Tolman's Principle of

Similitude. 8 It seems to me that it is not possible to ascribe any
significance to the fact that there exist these relations between the

various dimensional constants, but it must be regarded as an entirely

fortuitous result due to the limited number of elements of which the

dimensional formulas are composed, and their relative simplicity.

Another interesting speculation on the nature of the absolute

units requires comment. G. N. Lewis4 has stated it to be his convic-

tion that any set of absolute units will be found to bear a simple
numerical relation to any other possible set of absolute units. The

justification of this point of view at present is not to be found in

any accurate results of measurement, but is rather quasi-mystical

in its character. This point of view led Lewis to notice the remark-

ably simple relation between the Stefan constant and the electronic

charge and the gas constant, but so far as I know it has not been

fruitful in other directions, and I have already indicated another

possible significance of the simplicity of the relation.

Now let us examine this hypothesis~of Lewis's with a numerical

example. We have already found the magnitude of the fundamental

units which would give the value unity to the gravitational con-

stant, the velocity of light, the quantum, and the gas constant. Let

us now find what size units would make the gravitational constant,

the velocity of light, the gas constant, and the charge on the electron

all equal to unity. The work is exactly the same in detail as before,

and it is not necessary to write out the equations again. It will be

found that the following units are required.

New unit of mass, 1.849 X 10~6 gm
New unit of length, 1.368 X 10~34 cm
New unit of time, 4.56 X 10~45

sec

New unit of temperature, 8.07 X 1030 C

Now the ratio of all these units to the ones previously determined

will be found to be 1/29.36. On the face of it, 29.36 does not appear
to be a particularly simple number, but on examining the way in

which it came into the formulas, it will be found that 29.36 is the
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approximate value of 4 TT
(

-

)
,
and this somewhat complicated

\ 15 /
numerical expression came from Planck 's relation between Stefan 's

constant and the spectral radiation constants. In fact, using Lewis's

value for a, Planck's formula for h becomes

It would seem that there will be considerable hesitation in calling

a numerical coefficient of this form "simple." If this is simple, it

is hard to see what the criterion of numerical simplicity is, and
Lewis's principle, at least as a heuristic principle, becomes of ex-

ceedingly doubtful value. Lewis 's
9 own feeling is that the coefficient

in the above form cannot be regarded as simple, and the fact that it

cannot is presumptive evidence that the formula as given by Planck

can be regarded only as an approximation, and that sometime a

more rigorous theory will be possible in which the number which is

at present within the experimental error equal to 29.36 will be

expressed in a way which will appeal to everyone as simple as made

up of simple integers and TT'S.

The justification of such speculations is thus for the future. The

spirit of such speculations is evidently opposed to the spirit of this

exposition, and we are for the present secure in our point of view

which sees nothing mystical or esoteric in dimensional analysis.
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PROBLEMS

1. THE gas constant in the equation pv = RT, has the value 0.08207

when the pressure p is expressed in atmospheres, the volume v is the

volume in liters of 1 gm mol, and T is absolute Centigrade degrees.
What is R when p is expressed in dynes/cm

2 and v is in cm3
?

2. The thermal conductivity of copper is 0.92 cal. per cm2
per sec

per 1 per cm temperature gradient. What is it in B.T.U. per hour

per square foot for a temperature gradient of 1 Fahrenheit per
foot? (This last is the engineering unit.)

3. If the numerical value of e
2
/ch is 0.001161 in terms of the gm,

cm, and sec, what is its value in terms of the ton, mile, and hour?
e is the charge of the electron in E.S.U., c is the velocity of light in

empty space, and h is Planck's quantum of action.

4. The thrust exerted by an air propeller varies with the number
of revolutions per second and the speed of advance along the axis

of revolution. Show that the critical speed of advance at which the

thrust vanishes is proportional to the number of revolutions per
second.

5. Show that the acceleration toward the center of a particle

moving uniformly in a circle of radius r is Const v2
/r.

6. Show that the time of transverse vibration of a heavy stretched

wire is Const X length X (linear density/tension )*.

7. The time of longitudinal vibration of a bar is Const X length
X (volume density/elastic constant)*.

8. The velocity of sound in a liquid is Const X (density/modulus
of compressibility)'.

9. Given that the twist per unit length of a cylinder varies in-

versely as the elastic constant, or as the moment of the applied

force, prove that it also varies inversely as the fourth power of the

diameter.

10. There is a certain critical speed of rotation at which a mass
of incompressible gravitating fluid becomes unstable. Prove that

the angular velocity at instability is independent of the diameter
and proportional to the square root of the density.

11. There is a certain size at which a solid non-rotating gravitat-

ing sphere becomes unstable under its own gravitation. Prove that

the radius of instability varies directly as the square root of the

elastic constant and inversely as the density.
12. Given that the velocity of advance of waves in shallow water

is independent of the wave length, show that it varies directly as the

square root of the depth.
13. The velocity of capillary waves varies directly as the square
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root of the surface tension, and inversely as the square root of the

wave length and the density.
14. A mass attached to a massless spring experiences a damping

force proportional to its velocity. The mass is subjected to a periodic
force. Show that the amplitude of vibration in the steady state is

proportional to the force.

15. The time of contact of two equal spheres on impact is propor-
tional to their radius. Given further that the time varies inversely
as the fifth root of the relative velocity of approach, show that it

varies as the 2/5th power of the density, and inversely as the 2/5th

power of the elastic constant.

16. The specific heat of a perfect gas (whose atoms are character-

ized by their mass only) is independent of pressure and tempera-
ture.

17. Show that if a gas is considered as an assemblage of molecules

of finite size exerting no mutual forces on each other except when in

collision the viscosity is independent of the pressure and is propor-
tional to the square root of the absolute temperature.

18. Show that if the thermal conductivity of the gas of problem
17 is independent of the pressure it is also proportional to the

square root of the absolute temperature.
19. A periodic change of temperature is impressed on one face of

a half-infinite solid. Show that the velocity of propagation of the

disturbance into the solid is directly as the square root of the fre-

quency, and the wave length is inversely as the square root of the

frequency. The disturbance sinks to 1/eth of its initial value in a

number of wave lengths which is independent of the frequency and
the thermal constants of the material.

20. A long thin wire is immersed in a medium by which its ex-

ternal surface is maintained at a constant temperature. Heat is

supplied to the wire by an alternating current of telephonic fre-

quency at the rate Q coswt per unit volume. Show that the ampli-
tude of the periodic fluctuation of the average temperature of the

wire is of the form r= Q d2
/k f (w c d2

/k), where d is the diameter
of the wire, k the thermal conductivity, and c the heat capacity per
unit volume. If the wire is thin, show by a consideration of the

numerical values of k and c for metals that is independent of o>

and c and assumes the approximate form 6 = Const Q d2
/k.

21. The internal energy of a fixed quantity of a perfect gas,
reckoned from Abs. and pressure, is independent of the pres-
sure and proportional to the absolute temperature. Hence the inter-

nal energy reckoned from an arbitrary temperature and pressure
as the initial point is independent of pressure and proportional to

the excess of the absolute temperature over that of the initial point.
22. Why may not the argument of problem 21 be applied to the

entropy of a fixed amount of a perfect gas ?

23. T. W. Richards, Jour. Amer. Chem. Soc. 37, 1915, finds

empirically the following relation for different chemical elements
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ft
= 0.00021 A/D 1 -26

(Tm
- 50)

where 8 = -(] is the compressibility, A is the atomic weight, D

is the density, T m the melting temperature on the absolute Centi-

grade scale. What is the minimum number of dimensional constants

required to make this a complete equation, and what are their

dimensions ?

24. Show that the strength of the magnetic field about a magnetic
doublet varies inversely as the cube of the distance, and directly as

the moment of the doublet.

25. What are the dimensions of the dielectric constant of empty
space in the electromagnetic system of units ? What is its numerical

value ?

26. What are the dimensions of the magnetic permeability of

empty space in the electrostatic system of units ? What is its numeri-

cal value?

27. Given a half-infinite conducting medium in the plane surface

of which an alternating current sheet is induced. Show that the

velocity of propagation of the disturbance into the medium varies

as the square root of the specific resistance divided by the periodic

time, and the extinction distance varies as the square root of the

product of specific resistance and the periodic time.

28. Show that the self-induction of a linear circuit is proportional
to the linear dimensions.

29. A sinusoidal E.M.F. is applied to one end of an electrical line

with distributed resistance, capacity, and inductance. Show that the

velocity of propagation of the disturbance is inversely proportional,
and the attenuation constant is directly proportional to the square
root of the capacity per unit length.

30. An electron is projected with velocity v through a magnetic
field at right angles to its velocity. Given that the radius of curva-

ture of its path is directly proportional to its velocity, show that the

radius of curvature is also proportional to the mass of the electron,
and inversely proportional to the field and the charge.

31. In all electrodynamical problems into whose solution the

velocity of light enters, the unit of time may be so defined that the

velocity of light is unity, and two fundamental units, of mass and

time, suffice. Write the dimensions of the various electric and mag-
netic quantities in terms of these units. Obtain the formula for the

mass of an electron in terms of its mass and radius. . . . Problems

involving the gravitational constant may also be solved with only
the units of mass and length as fundamental. Discuss the formula
for the mass of the electron with gravitational units.

32. The Rydberg constant (of the dimensions of a frequency) de-

rived by Bohr 's argument for a hydrogen atom is of the form N =
Const m e*/h

3
,
where e and m are the mass and the charge of the

electron, and h is Planck's quantum of action.
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