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Outline

I Decision problems in climate research

I A conceptual emission problem

I An environment for specifying and solving SDPs

I Specifying and solving the emission problem
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The context

I Global GHG emissions have to be reduced fast to avoid
unmanageable impacts of climate change.

I Too rapid reductions may compromise the wealth of one or
more upcoming generations but ...

I ... they may promote a transition to societies that are more
wealthy, safe, fair and manageable.

I New technologies that significantly reduce the costs of very
fast emission reductions may become available soon.
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reduce emissions by certain (optimal, fair, ...) country-specific
amounts.

I In this situation most countries have a free-ride opportunity!
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Decision problems and dilemmas

I Decision problems often have the form of a dilemma.

I The consequences of decisions are typically uncertain.

I Often, decisions are taken (and possibly revised) sequentially
as time unfolds.

I Often, decisions are implemented with delays or they are not
implemented at all.

I Typically, policy advice entails two problems: what are ”best”
decisions and . . . how to implement them.
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A conceptual emission problem

I A decision maker has to take a sequence of decisions about
GHG emissions, one after the other.

I At each decision step, it can only pick up one of two options:
low emissions or high emissions.

I The decision taken by the decision maker may or may not be
implemented during the time until the next decision has to be
taken.

I If implemented, low emissions increase cumulated emissions
less than high emissions.



Global change management week 2018 - Formal methods for decision making → A conceptual emission problem

A conceptual emission problem

I A decision maker has to take a sequence of decisions about
GHG emissions, one after the other.

I At each decision step, it can only pick up one of two options:
low emissions or high emissions.

I The decision taken by the decision maker may or may not be
implemented during the time until the next decision has to be
taken.

I If implemented, low emissions increase cumulated emissions
less than high emissions.



Global change management week 2018 - Formal methods for decision making → A conceptual emission problem

A conceptual emission problem

I A decision maker has to take a sequence of decisions about
GHG emissions, one after the other.

I At each decision step, it can only pick up one of two options:
low emissions or high emissions.

I The decision taken by the decision maker may or may not be
implemented during the time until the next decision has to be
taken.

I If implemented, low emissions increase cumulated emissions
less than high emissions.



Global change management week 2018 - Formal methods for decision making → A conceptual emission problem

A conceptual emission problem

I A decision maker has to take a sequence of decisions about
GHG emissions, one after the other.

I At each decision step, it can only pick up one of two options:
low emissions or high emissions.

I The decision taken by the decision maker may or may not be
implemented during the time until the next decision has to be
taken.

I If implemented, low emissions increase cumulated emissions
less than high emissions.



Global change management week 2018 - Formal methods for decision making → A conceptual emission problem

A conceptual emission problem

I A decision maker has to take a sequence of decisions about
GHG emissions, one after the other.

I At each decision step, it can only pick up one of two options:
low emissions or high emissions.

I The decision taken by the decision maker may or may not be
implemented during the time until the next decision has to be
taken.

I If implemented, low emissions increase cumulated emissions
less than high emissions.



Global change management week 2018 - Formal methods for decision making → A conceptual emission problem

A conceptual emission problem

I At each step, the decision maker has to choose between low
and high emissions on the basis of four data:

I The amount of cumulated emissions.

I The current emission level.

I The availability of technologies for reducing emissions.

I A state of the world which can be either good or bad.
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A conceptual emission problem

I At the first decision step, the decision maker observes zero
cumulated emissions, high current emissions, unavailable
technologies and a good world.

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold, the probability that the world becomes bad steeply
increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that new technologies become
available is low at the first decision step. It increases steeply
after a critical number of steps.

I Once available, technologies stay available for ever.
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A conceptual emission problem

I Being in a bad world yields less benefits than being in a good
world.

I Low current emissions yield less benefits (more costs, less
growth) than high current emissions.

I Implementing low emissions when technologies are unavailable
costs more than implementing emissions when technologies
are available.

I The decision maker aim at maximising a sum of the benefits
over all decision steps.
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A conceptual emission problem: wrap-up

I We have seen a simple example of a Sequential Decision
Problem (SDP).

I The problem has been described through informal narratives.

I Even if we make these narrative more precise, we are far from
having a good understanding of the problem.

I Solving the problem and advising the decision maker requires
answering a few obvious questions:

I What kind of solutions or advice can we offer to the decision
maker?

I What kind of guarantees can we provide for such solutions?
Can we check that they are correct? What does this mean?
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A conceptual emission problem: wrap-up

I In order to answer these questions, it is useful to abstract
away from the specific problem!

I We start with a visual sketch of SDPs in general.

I Then we discuss how to specify and solve SDPs.

I We specify and solve the emission problem and discuss two
rigorous results:

I More uncertainty about the implementability of decisions
dictates earlier emission reductions.

I More uncertainty about the implications of exceeding critical
thresholds make earlier reductions sub-optimal.
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I The sketch gives us an intuition of SDPs but . . .

I . . . How can we specify a concrete SDP?

I . . . What does it mean to solve a SDP?

I . . . How can we check that a solution is correct?
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Mathematical specifications

I In math x = 1 and x = −1 are said to be solutions of x2 = 1.

I What does this precisely mean? x = 1, x = −1 and x2 = 1
are all equations!

I But they are in certain relations to each other. One has

x = 1⇒ x2 = 1

and also

x = −1⇒ x2 = 1

I These implications justify calling x = 1 and x = −1 solutions
of x2 = 1!
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I The equations x = 1 and x = −1 are different from x2 = 1
also from another point of view.

I They determine the value of x directly, without computations.

I The equation x2 = 1 instead specifies a problem: that of
finding values whose square is one.

I We can spell out the problem a little bit more explicitly:

Find x ∈ R s.t. x2 = 1

I This is a simple example of a problem specification.
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I A slightly more interesting example:

Find f : R→ R s.t. ∀x ∈ R, f (x) ∗ f (x) = x

I What does an f that fulfills the specification compute?

I Can one fulfill the specification?

I We can use specifications to understand problems and give
meanings to computations!

I Specifications can also be applied to clarify crucial notions.
We have seen that in emission problems . . .
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Mathematical specifications

I . . . emission reductions imply different costs and benefits for
different countries.

I The highest global benefits are obtained if most countries
reduce emissions by certain (optimal, fair, ...) country-specific
amounts.

I In this situation most countries have a free-ride opportunity.

I The most paradigmatic example of this situation is perhaps
the two-players prisoner’s dilemma:

High Low

High (1, 1) (3,0)

Low (0,3) (2,2)
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I Which property makes (High,High) an undesirable and yet
likely outcome?

I What does it mean for a pair of strategies to be a Nash
equilibrium?

I We can express this idea with a specification:

Let S = {High, Low} and p1, p2 : S × S → R payoffs. A

strategy profile (x , y) ∈ S × S is a Nash equilibrium iff

∀x ′, y ′ ∈ S, p1(x ′, y) 6 p1(x , y) and

p2(x , y ′) 6 p2(x , y).
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Mathematical specifications

I Let X denote the states that a decision maker can observe.

I Let Y denote the options available to the decision maker.

I For simplicity, assume that Y is the same for all x ∈ X .

I Policies are functions that associate an option to every state.

I Let val : X × Y → Real be a value function: val(x , y)
denotes the value of taking decision y in state x .

I A policy p : X → Y is called optimal w.r.t to val if it entails
decisions that are better or as good as any other decision for
all states.

I Exercise: give a mathematical specification of the notion of
optimality for policies.
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Dependent types and machine checkable specifications

I Mathematical specifications are useful to formulate notions
and intentions precisely but . . .

I . . . they can hardly be processed by computers.

I We want to take advantage of computers to check and
perhaps even fulfill specifications!

I Strongly typed functional programming languages and
dependent types make this possible.

I In strongly typed languages, each valid expression has a type:

1 + 2 : N
"Hello" : String

[1, 7, 3, 8] : List N

I The judgment e : t states that the expression e has type t.
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I In functional programming, one specifies what a computer
shall do in terms of functions and their application and
composition:

f x

denotes the application of the function f to the argument x .

g ◦ f

denotes the composition of g and f . Functions can take
functions as arguments:

(◦) : (b → c) → (a → b) → a → c
(g ◦ f ) x = g (f x)
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I In dependently typed languages, types can depend on values:

data Vect : N → Type → Type where
Nil : Vect Z a
(::) : (x : a) → (xs : Vect n a) → Vect (S n) a

I Thus, we can use types to encode specifications. For instance:

Injective : (a → b) → Type
Injective {a} f = (x , y : a) → f x = f y → x = y

I This is almost a word-by-word translation of

f : A→ B injective iff ∀x , y ∈ A, f (x) = f (y)⇒ x = y.
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Dep. types and machine checkable specifications: wrap-up

I We can apply dependent types to implement programs that
are correct by construction.

I For a program P, this is done in three steps:

I 1: Write a formal specification specP for P.

I 2: Implement P.

I 3: Implement specP.

I Example of 1:

P : R → R
specP : (x : R) → 0 6 x → (P x) ∗ (P x) = x
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I We can also apply dependent types to construct an
environment for specifying and solving SDPs.

I At decision step t, X t denotes the states the decision maker
can observe:

X : N → Type

I At decision step t, Y t x denotes the controls available to the
decision maker in x : X t:

Y : (t : N) → X t → Type
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An environment for specifying and solving SDPs

I At decision step t, next t x y denotes the next states that can
be reached by selecting control y in the current state x :

next : (t : N) → (x : X t) → Y t x → M X (S t)

I Notation:

I S t = t + 1.

I M = Identity ⇒ no uncertainty, deterministic SDP

I M = List ⇒ non-deterministic SDP

I M = Prob ⇒ stochastic SDP
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An environment for specifying and solving SDPs

I To specify a concrete SDP, one defines X , Y and next.

I For example, in the emission problem discussed in the
beginning, X t represents the cumulated emissions, the
current emissions, availability of technologies for reducing
emission and a state of the world.

I To complete the specification of a concrete SDP, we have to
say which are the benefits that the decision maker wants to
maximize:

Val : Type

reward : (t : N) → (x : X t) → Y t x → X (S t) → Val
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I In SDPs, controls are often associated with the consumption
of resources: money, fuel, etc.

I In our emission problem, Y t x can only take two values:
High and Low .

I The decision maker seeks controls that maximize a sum of the
rewards, thus values of type Val have to be ”addable”:

(⊕) : Val → Val → Val

zero : Val

I Also, we want to be able to compare benefits:

(v) : Val → Val → Type

I In SDPs, Val is often N or R.
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I Policies are functions from states to controls:

Policy : (t : N) → Type

Policy t = (x : X t) → Y t x

I Policy sequences are literally sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where

Nil : PolicySeq t Z

(::) : Policy t → PolicySeq (S t) n → PolicySeq t (S n)

I We can construct an empty policy sequence at every decision
step.

I With a decision policy for step t and a sequence of n policies,
we can construct a policy sequence for n + 1 decision steps.
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I We can compute the value of taking n decisions according to
a policy sequence in terms of a sum of the rewards obtained:

val : (x : X t) → PolicySeq t n → Val

val x Nil = zero

val x (p :: ps) = reward t x y x ′ ⊕ val x ′ ps where

y : Y t x

y = p x

x ′ : X (S t)

x ′ = next t x y

I Remember that the decision maker seeks controls that
maximize a sum of the rewards.

I val computes precisely such a sum for arbitrary policy
sequences!
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I Thus, we can use val to express what it means for a policy
sequence to be optimal:

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (x : X t) → (ps ′ : PolicySeq t n) →
val x ps ′ v val x ps

I But . . .

I . . . How do we compute optimal policies?
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I The key idea lies in the notion of optimal extensions.

I A policy p is an optimal extension of a policy sequence ps if
there is no better way to make one more decision steps than
p :: ps:

OptExt : PolicySeq (S t) m → Policy t → Type

OptExt ps p = (x : X t) → (p′ : Policy t) →
val x (p′ :: ps) v val x (p :: ps)
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I Optimal extensions are the key for computing optimal policy
sequences because of Bellman’s optimality principle:

Bellman : (ps : PolicySeq (S t) m) → OptPolicySeq ps →
(p : Policy t) → OptExt ps p →
OptPolicySeq (p :: ps)

I Proving Bellman is not difficult but a little bit technical.

I Instead of proving the result, we are going to apply it!
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I Assume that we have a method for computing optimal
extensions of arbitrary policy sequences:

optExt : PolicySeq (S t) n → Policy t

optExtSpec : (ps : PolicySeq (S t) n) →
OptExt ps (optExt ps)

I Then

backwardsInduction : (t : N) → (n : N) → PolicySeq t n

backwardsInduction t Z = Nil

backwardsInduction t (S n) = optExt ps :: ps where

ps : PolicySeq (S t) n

ps = backwardsInduction (S t) n

computes optimal policy sequences for arbitrary SDPs! Proof:
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I We have built an environment to specify and solve arbitrary
SDPs.

I The method yields provably optimal policies.

I Thus, we can provide decision makers with rigorous rules to
take best decisions under uncertainty and imperfect
information!

I Two questions remain open:

I 1: When and how can we compute optimal extensions?

I 2: How do we apply the method?
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I At each decision step the decision maker has only two options:
low or high emissions:

Y t x = {Low ,High}

I Low emissions, if implemented, increase the cumulated
emissions less than high emissions.

I Without lost of generality, we can take these increases to be
zero and one.
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I At each step, the decision maker has to choose between low
and high emissions on the basis of four data:

I The amount of cumulated emissions.

I The current emission level E = {Low ,High}.

I The availability of effective technologies for reducing emissions
T = {Available,Unavailable }.

I A state of the world W = {Good ,Bad }.

I Thus, states are just tuples of 4 values:

X t = ({0 . . t },E ,T ,W )
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Uncertainties

I The process starts with zero cumulated emissions, high
emissions, unavailable technologies and in a good world

I In this state, the probability that the world turns bad is low.

I But if the cumulated emissions increase beyond a critical
threshold crE : R, the probability that the world becomes
bad increases.

I Once the world has reached a bad state, there is no chance to
turn back to a good state.

I Similarly, the probability that effective technologies become
available is low in the beginning and increases after a critical
number of decision steps crN : N.

I Once available, effective technologies stay available for ever.
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I After crN decision steps, efficient technologies may or may
not become available:

I pA1 – the probability that effective technologies become
available when the number of decision steps is 6 crN,

I pA2 – the probability that effective technologies become
available when the number of decision steps is > crN.

I Constraint: pA1 6 pA2 .
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Transition function

I Given crN, crE and the probabilities pLL . . . pS2 , the
transition function can be defined by cases.

I For instance, if

I the current state is x = (e,H,U,G ),

I the decision maker has opted for low emissions,

I e 6 crE and

I t 6 crN . . .
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Transition function

I the result of next t x L is a probability distribution with the
assignments:

prob (e, L,U,G ) = pLH ∗ (1− pA1) ∗ pS1
prob (e + 1,H,U,G ) = (1− pLH) ∗ (1− pA1) ∗ pS1
prob (e, L,A,G ) = pLH ∗ pA1 ∗ pS1
prob (e + 1,H,A,G ) = (1− pLH) ∗ pA1 ∗ pS1
prob (e, L,U,B) = pLH ∗ (1− pA1) ∗ (1− pS1)
prob (e + 1,H,U,B) = (1− pLH) ∗ (1− pA1) ∗ (1− pS1)
prob (e, L,A,B) = pLH ∗ pA1 ∗ (1− pS1)
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Rewards

The idea is that:

I Being in a bad world yields less benefits (more damages) than
being in a good world.

I Low emissions yield less benefits (more costs, less growth)
than high emissions.

I Implementing low emissions when effective technologies are
unavailable costs more than implementing emissions when
these technologies are available.
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Rewards
Without loss of generality, we can take the benefits of being in a
good world for a step to be one and define

reward t x y (e,H,U,G ) = 1 + h
reward t x y (e,H,U,B) = b + h
reward t x y (e,H,A,G ) = 1 + h
reward t x y (e,H,A,B) = b + h
reward t x y (e, L,U,G ) = 1 + lu
reward t x y (e, L,U,B) = b + lu
reward t x y (e, L,A,G ) = 1 + la
reward t x y (e, L,A,B) = b + la

where h, b, lu, la : R fulfil b 6 1, 0 6 lu 6 la 6 h.

Notice that

I The minimal cost of implementing low emissions is h − la

I The step costs of being in a bad world are 1− b

I 1− b < h − la ⇒ reducing emissions is never a best choice!
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Completing the specification

I State, Ctrl , next and reward as discussed.

I M = Prob, Val = R, v= lift 6, ⊕ = +, meas is the expected
value.

I 9 decision steps, starting in (0,H,U,G ): zero cumulated
emissions, high emissions, unavailable efficient technologies
and world in a good state.

I crE = 4 and crN = 2 .

I b = 0.5, lu = 0.1, la = 0.2, h = 0.3.
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Logical results

I If the state of the world is bad, reducing emissions can never
be optimal: Après moi le déluge.

I Conversely, reducing emissions can only pay off if it allows
avoiding transitions to a bad world.

I At the last decision step it is always optimal to select high
emissions.

I crE = 4 ⇒ it takes at least 5 steps to achieve states in which
the sum of the cumulated emissions exceeds crE and, the
probability of a transition to a bad world increases from pS1
to pS2 .

I crN = 2 ⇒ it takes 3 steps to achieve states in which the
probability that effective technologies for reducing GHG
emissions become available increases from pA1 to pA2 .
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Certain case: basic facts

I pS2 = pA1 = 0, pS1 = pA2 = pLL = pLH = pHL = pHH = 1.

I Effective technologies become available (with certainty) after
4 steps.

I The state of the world turns bad (with certainty) after 6 steps
at high emissions.

I For any given policy sequence there is exactly one possible
state-control trajectory.
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((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),L), ((4,L,A,G),H), ((5,H,A,G) )], 100%, 11.3

I Expected sum of rewards = 11.3

I Optimal policies dictate postponing emission reductions until
effective technologies for reducing emissions become available!
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Global change management week 2018 - Formal methods for decision making → Specifying and solving the emission problem

Uncertainty on implementability: basic facts

I pS2 = pA1 = 0, pS1 = pA2 = 1 but . . .

I . . . pLL = pHH = 0.9 and pLH = pHL = 0.7

I Effective technologies still become available after 4 steps and
the state of the world turns bad after 6 steps at high
emissions but . . .

I . . . a policy (optimal or not) now entails 29 = 512 possible
trajectories.
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Uncertainty on implementability: policies

I Const High policies:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 38.7%, 9.7

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((8,L,A,B) )], 4.3%, 9.6

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),H), ((4,H,A,G),H),

((4,L,A,G),H), ((5,H,A,G),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B), )], 3.3%, 10.1

...

I Expected sum of rewards = 9.904.

I Optimal policies:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L),

((2,L,A,G),L), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G),H), ((5,H,A,G), )], 23.4%, 11.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G), )], 7.8%, 11.3

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),L), ((2,L,U,G),L), ((2,L,A,G),L),

((2,L,A,G),L), ((2,L,A,G),H), ((2,L,A,G),H), ((3,H,A,G),H), ((4,H,A,G), )], 7.8%, 11.1

...

I Expected sum of rewards = 11.085.

I Uncertainty about the implementability of decisions dictates
earlier emission reductions!
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More uncertainties

I What happens to optimal policies if we account for more
uncertainties in the decision problem?

I We want to estimate the impacts of:

I Uncertainty on the availability of efficient technologies:

I There is a small probability that technologies become available
before 4 steps and a small probability that technologies do not
become available available even after 4 steps!

I Uncertainty on the consequences of exceeding the critical
cumulated emission threshold crE :

I There is a small probability that the world turns bad before 6
high emission steps and a small probability that the world
doesn’t turns bad even after crE has been exceeded!
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Uncertainty on the availability of technologies

I pLL, pHH, pLH, pHL, pS1 and pS2 as before but . . .

I . . . pA1 = 0.1 and pA2 = 0.9 instead of 0 and 1.

I 2n ∗ (n + 1) = 5120 possible trajectories for a policy sequence
for n = 9 steps!

I Optimal policies entail the same most likely trajectories. The
expected sum of rewards is almost the same!
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I 51200 possible trajectories for a 9-steps policy sequence!

I For Const High policies the most likely trajectory is
unchanged but . . .
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Uncertainty on the consequences of exceeding crE

I Optimal policies look now quite different:

I trajectories, probabilities, rewards
[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,G),H), ((3,H,U,G),L), ((3,L,A,G),L),

((3,L,A,G),L), ((3,L,A,G),L), ((3,L,A,G),H), ((4,H,A,G),H), ((5,H,A,G),)], 5.9%, 11.3

[((0,H,U,G),H), ((1,H,U,B),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.5%, 7.2

[((0,H,U,G),H), ((1,H,U,G),H), ((2,H,U,B),H), ((3,H,U,B),H), ((4,H,A,B),H),

((5,H,A,B),H), ((6,H,A,B),H), ((7,H,A,B),H), ((8,H,A,B),H), ((9,H,A,B), )], 2.3%, 7.7

...

I Expected sum of rewards = 9.543

I Uncertainty about the consequences of exceeding crE make
earlier emission reductions sub-optimal!
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Wrap-up

I Perhaps not surprisingly, more uncertainty about the
implementability of decisions dictates earlier emission
reductions. But . . .

I . . . more uncertainty about the implications of exceeding
critical thresholds make earlier reductions sub-optimal!

I Is this what you would have expected?

Why?

I The results are rigorous: optimality of “optimal” policies is
machine-checked!
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Thanks for your attention!

I Mail: botta@pik-potsdam.de

I Phone: 288-2657

I Office: A56, 3.26 (Sonne)

I These slides: https://gitlab.pik-potsdam.de/botta/

IdrisLibs/tree/master/lectures/2018-12-03.PIK.

Global_change_management_week

https://gitlab.pik-potsdam.de/botta/IdrisLibs/tree/master/lectures/2018-12-03.PIK.Global_change_management_week
https://gitlab.pik-potsdam.de/botta/IdrisLibs/tree/master/lectures/2018-12-03.PIK.Global_change_management_week
https://gitlab.pik-potsdam.de/botta/IdrisLibs/tree/master/lectures/2018-12-03.PIK.Global_change_management_week
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