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Small context: vector indexing and lookup

I The challenge is implementing vector index and lookup:

index : Fin n → Vect n X → X

lookup : (x : X ) → (xs : Vect n X ) → Elem x xs → Fin n

I The idea is that index shall be an “inverse” of lookup:

ilSpec : (x : X ) → (xs : Vect n X ) → (p : Elem x xs) →
index (lookup x xs p) xs = x

liSpec : (k : Fin n) → (xs : Vect n X ) →
(p : Injective2 xs) → (q : Elem (index k xs) xs) →
lookup (index k xs) xs q = k
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Small context: vector indexing and lookup

I All functions are required to be total.

I The context of the specification is Vect, Elem and Injective2 .

I Injective2 xs means that xs has no duplicates:

Injective2 : Vect n X → Type
Injective2 xs = Not (i = j) → Not (index i xs = index j xs)
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I Could we simplify the specification, e.g., by declaring lookup
to return a list of Fin n?

lookup : (x : X ) → (xs : Vect n X ) → List (Fin n)

I Could we get rid of q in liSpec?

liSpec : (k : Fin n) → (xs : Vect n X ) →
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I The challenge is implementing total functions

bi : (t : N) → (n : N) → PolicySeq t n

and

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I The idea is that bi shall be a generic implementation of
dynamic programming (Bellman 1957).

I It shall return a sequence of policies for n decision steps
starting from decision step t for arbitrary n and t.

I biLemma states that bi t n shall be an optimal policy
sequence.
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PolicySeq and OptPolicySeq:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (t + 1) n → PolicySeq t (n + 1)

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (ps ′ : PolicySeq t n) → (x : State t) →
val x ps ′ v val x ps

I This brings into the context Policy , State, val , v.

I Giving the full context of bi , biLemma means formalizing the
theory of dynamic programming.
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Dynamic programming: an informal write up

I DP is a method for solving sequential decision problems.

I SDPs are decision problems in which a decision maker picks
up a sequence of controls.

I At each decision step, the decision maker observes a state and
picks up a control.

I The set of states observable at a given decision step can
depend on that step.

I The set of controls available to the decision maker in a given
state can depend on that state.

I Selecting a control in a state entails a set of possible next
states.

I A triple (current state, current control, next state) entails a
reward.

I The decision maker aims at maximising a sum of possible
rewards over a fixed number of decision steps.
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I A SDP can be specified in terms of four functions:

State : (t : N) → Type

Ctrl : (t : N) → (x : State t) → Type

next : (t : N) → (x : State t) → (y : Ctrl t x) →
M (State (t + 1))
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I M is a functor representing the problem’s uncertainties:

I M : Type → Type

I M = Id (deterministic uncertainty)

I M = List (non-deterministic uncertainty)

I M = Prob (stochastic uncertainty)

I In many problems M = Prob or M = List (Monadic
dynamical systems, Ionescu 2009).
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reward : (t : N) → (x : State t) → (y : Ctrl t x) →
(x ′ : State (t + 1)) → Val

I Thus map (reward t x y) (next t x y) : M Val

I In many problems Val = R and sums are discounted sums of
real numbers!



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: SDPs

I The fourth function defines the problem’s rewards

reward : (t : N) → (x : State t) → (y : Ctrl t x) →
(x ′ : State (t + 1)) → Val

I Thus map (reward t x y) (next t x y) : M Val

I In many problems Val = R and sums are discounted sums of
real numbers!



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: SDPs

I The fourth function defines the problem’s rewards

reward : (t : N) → (x : State t) → (y : Ctrl t x) →
(x ′ : State (t + 1)) → Val

I Thus map (reward t x y) (next t x y) : M Val

I In many problems Val = R and sums are discounted sums of
real numbers!



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: SDPs

I The fourth function defines the problem’s rewards

reward : (t : N) → (x : State t) → (y : Ctrl t x) →
(x ′ : State (t + 1)) → Val

I Thus map (reward t x y) (next t x y) : M Val

I In many problems Val = R and sums are discounted sums of
real numbers!



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: policies

I Policies are functions from states to controls

Policy : (t : N) → Type
Policy t = (x : State t) → Ctrl t x

I Policy sequences are sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (t + 1) n → PolicySeq t (n + 1)



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: policies

I Policies are functions from states to controls

Policy : (t : N) → Type
Policy t = (x : State t) → Ctrl t x

I Policy sequences are sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (t + 1) n → PolicySeq t (n + 1)



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: policies

I Policies are functions from states to controls

Policy : (t : N) → Type
Policy t = (x : State t) → Ctrl t x

I Policy sequences are sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (t + 1) n → PolicySeq t (n + 1)



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: policies

I Policies are functions from states to controls

Policy : (t : N) → Type
Policy t = (x : State t) → Ctrl t x

I Policy sequences are sequences of policies:

data PolicySeq : (t : N) → (n : N) → Type where
Nil : PolicySeq t Z
(::) : Policy t → PolicySeq (t + 1) n → PolicySeq t (n + 1)



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them

⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val

zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes

meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I The notion of optimality for policy sequences depends on how
the decision maker compares rewards

v : Val → Val → Type

I ... on how it adds them
⊕ : Val → Val → Val

I ... on a default “zero” value of type Val
zero : Val

I and on how it measures uncertain outcomes
meas : M Val → Val

Often Val = R, v= lift 6, ⊕ = +, zero = 0 and meas is the expected value function.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I With v, ⊕ and meas, one can compute the value of taking n
decisions starting from some initial state and according to a
policy sequence ps:

val : (x : State t) → PolicySeq t n → Val

val {t } {n = Z } x Nil = zero

val {t } {n = m + 1} x (p :: ps) = meas (fmap f mx ′) where
y : Ctrl t x
y = p x
mx ′ : M (State (t + 1))
mx ′ = next t x y
f : State (t + 1) → Val
f x ′ = reward t x y x ′ ⊕ val x ′ ps



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I With v, ⊕ and meas, one can compute the value of taking n
decisions starting from some initial state and according to a
policy sequence ps:

val : (x : State t) → PolicySeq t n → Val

val {t } {n = Z } x Nil = zero

val {t } {n = m + 1} x (p :: ps) = meas (fmap f mx ′) where
y : Ctrl t x
y = p x
mx ′ : M (State (t + 1))
mx ′ = next t x y
f : State (t + 1) → Val
f x ′ = reward t x y x ′ ⊕ val x ′ ps



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I With v, ⊕ and meas, one can compute the value of taking n
decisions starting from some initial state and according to a
policy sequence ps:

val : (x : State t) → PolicySeq t n → Val

val {t } {n = Z } x Nil = zero

val {t } {n = m + 1} x (p :: ps) = meas (fmap f mx ′) where
y : Ctrl t x
y = p x
mx ′ : M (State (t + 1))
mx ′ = next t x y
f : State (t + 1) → Val
f x ′ = reward t x y x ′ ⊕ val x ′ ps



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (ps ′ : PolicySeq t n) → (x : State t) →
val x ps ′ v val x ps

I ... and derive

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I from Bellman’s principle of optimality.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (ps ′ : PolicySeq t n) → (x : State t) →
val x ps ′ v val x ps

I ... and derive

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I from Bellman’s principle of optimality.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (ps ′ : PolicySeq t n) → (x : State t) →
val x ps ′ v val x ps

I ... and derive

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I from Bellman’s principle of optimality.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (ps ′ : PolicySeq t n) → (x : State t) →
val x ps ′ v val x ps

I ... and derive

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I from Bellman’s principle of optimality.



Specifications in small and large contexts → Large context: dynamic programming

Dynamic programming: optimality

I ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n → Type

OptPolicySeq ps = (ps ′ : PolicySeq t n) → (x : State t) →
val x ps ′ v val x ps

I ... and derive

bi : (t : N) → (n : N) → PolicySeq t n

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

I from Bellman’s principle of optimality.



Specifications in small and large contexts → Specifications in large contexts

Specifications in large contexts

I State, Ctrl , M, Policy , v have been introduced as functions
that return values of type Type.

I Perhaps it would have been better to use data declarations
instead?

When do we use functions? When data declarations?

I We need more than just State, Ctrl , M, next, reward , v, ⊕
and meas to specify the context of a DP problem.

I For instance, we need to require M to be a container monad,
v to be a total preorder, ⊕ to be monotone with respect to v
. . .
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I Type classes are useful to inject a context in the scope of a
functions but . . .

I How to stipulate Monad M for a module?

I We have not been able to use type classes effectively to
structure the context of bi , biLemma!

I We need to formalize properties of context elements whose
implementation is deferred to applications, for instance

finiteAllViable : FiniteAll → FiniteViable → FiniteAllViable

I This has turned out to be problematic due to current
language limitations: explicit filling in of scoped (not top
level) implicits is not yet implemented.
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I In DP we can implement a generic verified bi without relying
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I In formalizations of probability theory, numerical analysis,
machine learning, unimplementable postulated are
unavoidable.

I This leads to notions of correctness that are conditional and
incremental: one can type check a program to be correct but
one cannot compute a correctness proof.
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Elem (index k xs) xs

not

index : (k : Fin n) → (xs : Vect n X ) →
Σ X (λx ⇒ Elem x xs)

I For a program or data type, one would like a minimal set of
specifications that allows the proving useful results about that
program independently of its implementation.
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Dynamic programming: Bellman’s principle of optimality

I Bellman’s principle rests on the notion of optimal extension of
a policy sequence:

OptExt : PolicySeq (t + 1) m → Policy t → Type

OptExt ps p = (x : State t) → (p′ : Policy t) →
val x (p′ :: ps) v val x (p :: ps)

I With this notion, Bellman’s principle can be formulated as

Bellman : (ps : PolicySeq (t + 1) m) → OptPolicySeq ps →
(p : Policy t) → OptExt ps p →
OptPolicySeq (p :: ps)

I We can implement Bellman if . . .
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Dynamic programming: minimal requirements

I ... v is reflexive and transitive.

I ⊕ is monotone w.r.t. v:

monotonePlusLTE : a v b → c v d → (a⊕ c) v (b ⊕ d)

I meas fulfills a monotonicity condition (Ionescu 2009):

measMon : {A : Type } →
(f : A → Val) → (g : A → Val) →
((a : A) → (f a) v (g a)) →
(ma : M A) →
meas (fmap f ma) v meas (fmap g ma)

Proof idea: val x (p′ :: ps′) v val x (p′ :: ps) v val x (p :: ps) and transitivity of v.
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Dynamic programming: bi

I How can we take advantage of Bellman’s principle?

I Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

I Then

bi t Z = Nil
bi t (n + 1) = optExt ps :: ps where ps = bi (t + 1) n

is correct.
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Dynamic programming: bi is correct

I The task is to implement

biLemma : (t : N) → (n : N) → OptPolicySeq (bi t n)

for

bi t Z = Nil

bi t (m + 1) = optExt ps :: ps where ps = bi (t + 1) m

I Case n = 0: reflexivity of v.
I Case n = m + 1: induction on biLemma:

biLemma t (m + 1) = Bellman ps ops p oep where

ps : PolicySeq (t + 1) m; ps = bi (t + 1) m
ops : OptPolicySeq ps; ops = biLemma (t + 1) m
p : Policy t; p = optExt ps
oep : OptExt ps p; oep = optExtLemma ps
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bi t Z = Nil

bi t (m + 1) = optExt ps :: ps where ps = bi (t + 1) m

I Case n = 0: reflexivity of v.
I Case n = m + 1: induction on biLemma:

biLemma t (m + 1) = Bellman ps ops p oep where

ps : PolicySeq (t + 1) m; ps = bi (t + 1) m
ops : OptPolicySeq ps; ops = biLemma (t + 1) m
p : Policy t; p = optExt ps
oep : OptExt ps p; oep = optExtLemma ps



Specifications in small and large contexts → Dynamic programming continued

Dynamic programming: optimal extensions

I Under which conditions can one compute optimal extensions

optExt : PolicySeq (t + 1) n → Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) →
OptExt ps (optExt ps)

of arbitrary policy sequences?

I This is for another talk but . . .
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