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» The challenge is implementing vector index and lookup:

index : Finn — Vectn X — X

lookup : (x : X) — (xs : Vect nX) — Elemx xs — Finn

» The idea is that index shall be an “inverse” of lookup:
ilSpec : (x : X) — (xs : Vect n X) — (p : Elem x xs) —
index (lookup x xs p) xs = x

liSpec : (k : Finn) — (xs : Vectn X) —
(p : Injective2 xs) — (q : Elem (index k xs) xs) —
lookup (index k xs) xs g = k
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Small context: vector indexing and lookup

» All functions are required to be total.
» The context of the specification is Vect, Elem and Injective2.

> Injective2 xs means that xs has no duplicates:

Injective2 : Vect n X — Type
Injective2 xs = Not (i = j) — Not (index i xs = index j xs)
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Small context: vector indexing and lookup

» Could we simplify the specification, e.g., by declaring lookup
to return a list of Fin n?

lookup : (x : X) — (xs : Vect n X) — List (Fin n)

» Could we get rid of g in liSpec?
liSpec : (k : Finn) — (xs : Vect n X) —
(p : Injective2 xs) — (q : Elem (index k xs) xs) —
lookup (index k xs) xs q = k

» When is a specification “enough”?

» Can we put forward guidelines for specifications?
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The challenge is implementing total functions

bi :(t: N) - (n:N) — PolicySeq t n
and

bilLemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
The idea is that bi shall be a generic implementation of
dynamic programming (Bellman 1957).

It shall return a sequence of policies for n decision steps
starting from decision step t for arbitrary n and t.

biLemma states that bi t n shall be an optimal policy
sequence.
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Large context: dynamic programming

» We can get an intuition of the specification by looking at
PolicySeq and OptPolicySeq:
data PolicySeq : (t : N) — (n : N) — Type where
Nil : PolicySeq t Z
(::) : Policy t — PolicySeq (t +1) n — PolicySeq t (n+1)

OptPolicySeq : PolicySeq t n — Type
OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : Statet) —

val x ps’' C val x ps
» This brings into the context Policy, State, val, C.

» Giving the full context of bi, biLemma means formalizing the
theory of dynamic programming.
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Dynamic programming: SDPs

> A SDP can be specified in terms of four functions:

State : (t : N) — Type

Ctrl : (t : N) — (x : Statet) — Type

next : (t : N) — (x : Statet) — (y : Ctrltx) —
M (State (t + 1))
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» M is a functor representing the problem’s uncertainties:
» M : Type — Type
» M = Id (deterministic uncertainty)

» M = List (non-deterministic uncertainty)

v

M = Prob (stochastic uncertainty)

» In many problems M = Prob or M = List (Monadic
dynamical systems, lonescu 2009).
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Dynamic programming: SDPs

» The fourth function defines the problem’s rewards

reward : (t : N) — (x : Statet) — (y : Ctrlt x) —
(x" : State (t+1)) — Val

» Thus map (reward t x y) (next t x y) : M Val

» In many problems Val = R and sums are discounted sums of
real numbers!
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» Policies are functions from states to controls

Policy : (t : N) — Type
Policy t = (x : Statet) — Ctrl t x

» Policy sequences are sequences of policies:
data PolicySeq : (t : N) — (n : N) — Type where

Nil : PolicySeq t Z
(:1) : Policy t — PolicySeq (t+1) n — PolicySeq t (n+ 1)
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» With C, @& and meas, one can compute the value of taking n
decisions starting from some initial state and according to a
policy sequence ps:

val : (x : Statet) — PolicySeqtn — Val
val {t} {n= 2} x Nil = zero

val {t} {n=m+1} x (p:: ps) = meas (fmap f mx’') where
y o Ctrl tx
y =px
mx" : M (State (t + 1))
mx' = nexttxy
f . State (t+1) — Val
fx' =reward t x y x' ® val x' ps
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Dynamic programming: optimality

» ... formalize the notion of optimality for policy sequences

OptPolicySeq : PolicySeq t n — Type

OptPolicySeq ps = (ps’ : PolicySeq t n) — (x : State t) —
val x ps' C val x ps

» ... and derive

bi :(t:N) — (n:N) — PolicySeq t n
bilemma : (t : N) — (n : N) — OptPolicySeq (bi t n)

» from Bellman'’s principle of optimality.
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» State, Ctrl, M, Policy, C have been introduced as functions
that return values of type Type.

» Perhaps it would have been better to use data declarations
instead? When do we use functions? When data declarations?

» We need more than just State, Ctrl, M, next, reward, C, &
and meas to specify the context of a DP problem.

» For instance, we need to require M to be a container monad,
C to be a total preorder, & to be monotone with respect to C
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» Type classes are useful to inject a context in the scope of a
functions but ...

» How to stipulate Monad M for a module?

» We have not been able to use type classes effectively to
structure the context of bi, biLemma!

» We need to formalize properties of context elements whose
implementation is deferred to applications, for instance

finiteAllViable : FiniteAll — FiniteViable — FiniteAllViable

» This has turned out to be problematic due to current
language limitations: explicit filling in of scoped (not top
level) implicits is not yet implemented.
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Preliminary conclusions, guidelines

» In DP we can implement a generic verified bi without relying
on unimplementable postulates.

» In formalizations of probability theory, numerical analysis,
machine learning, unimplementable postulated are
unavoidable.

» This leads to notions of correctness that are conditional and
incremental: one can type check a program to be correct but
one cannot compute a correctness proof.
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Preliminary conclusions, guidelines

» Conditional, incrementally correct implemetations require
separating programs from specifications:

index : Finn = VectnX — X
indexSpec : (k : Finn) — (xs : Vect n X) —
Elem (index k xs) xs

not

index : (k : Finn) — (xs : Vect n X) —
Y X (Ax = Elem x xs)

» For a program or data type, one would like a minimal set of
specifications that allows the proving useful results about that
program independently of its implementation.
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Dynamic programming: Bellman's principle of optimality

» Bellman’s principle rests on the notion of optimal extension of
a policy sequence:

OptExt . PolicySeq (t +1) m — Policy t — Type
OptExt ps p = (x : Statet) — (p’ : Policy t) —
val x (p’ :: ps) C val x (p:: ps)

» With this notion, Bellman's principle can be formulated as

Bellman : (ps : PolicySeq (t +1) m) — OptPolicySeq ps —
(p : Policyt) — OptExt psp —
OptPolicySeq (p :: ps)

» We can implement Bellman if ...
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» ... C is reflexive and transitive.

» @ is monotone w.r.t. C:

monotonePlusLTE : aC b — cCd — (a®@c)C(badd)

» meas fulfills a monotonicity condition (lonescu 2009):

measMon : {A : Type} —
(fF:A—= Val) - (g : A — Val) —
((a:A) = (fa)C(ga) =
(ma: MA) —
meas (fmap f ma) C meas (fmap g ma)
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Dynamic programming: bi

» How can we take advantage of Bellman’s principle?

» Assume that we can compute optimal extensions of arbitrary
policy sequences:

optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t + 1) n) —
OptExt ps (optExt ps)

» Then

bitZ = Nil
bi t (n+ 1) = optExt ps :: ps where ps = bi (t +1) n

is correct.
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Dynamic programming: bi is correct

» The task is to implement
bilemma : (t : N) — (n : N) — OptPolicySeq (bi t n)
for
bitZ = Nil
bi t (m+ 1) = optExt ps :: ps where ps = bi (t +1) m

» Case n = 0: reflexivity of C.
» Case n = m+ 1: induction on biLemma:

biLemma t (m + 1) = Bellman ps ops p oep where
ps : PolicySeq (t+1)m; ps =bi(t+1)m
ops : OptPolicySeq ps; ops = biLemma (t +1) m
p : Policy t; p = optExt ps
oep : OptExt ps p; oep = optExtLemma ps
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optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t +1) n) —
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of arbitrary policy sequences?
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Dynamic programming: optimal extensions

» Under which conditions can one compute optimal extensions

optExt . PolicySeq (t +1) n — Policy t

optExtLemma : (ps : PolicySeq (t +1) n) —
OptExt ps (optExt ps)

of arbitrary policy sequences?

» This is for another talk but ...
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